Neuroeconomics

Colin F. Camerer, Jonathan D. Cohen, Ernst Fehr, Paul W. Glimcher, and David Laibson

INTRODUCTION

Neuroeconomics is the study of the biological microfoundations of economic cognition and economic behavior. Biological microfoundations are neurochemical mechanisms and pathways, like brain regions, neurons, genes, and neurotransmitters.1 Economic cognition includes memory, preferences, emotions, mental representations, expectations, anticipation, learning, perception, information processing, inference, simulation, valuation, and the subjective experience of reward. In general, neuroeconomic research seeks to identify and test biologically microfounded models that link cognitive building blocks to economic behavior (Glimcher and Rustichini 2004; Camerer et al. 2005; Bernheim 2008; Fehr and Rangel 2011; Camerer 2013).

Neuroeconomics is a big tent. Neuroeconomic research requires some curiosity about neurobiology, but neuroeconomic research does not necessarily require a departure from classical economic assumptions (e.g., rationality and dynamic consistency). A classical economist would be a neuroeconomist if he or she wanted to study the biological discipline that influence optimal (or constrained optimal) decision making. For example, neuroeconomic research provides insights about the sources of preference heterogeneity. To be a neuroeconomist you need to take an interest in the operation of the brain, but you don’t need to prejudge its optimality.

Neuroeconomics includes both theoretical modeling and empirical measurement. At the moment, the majority of neuroeconomic research is focused on measurement. However, this may change as a rapidly growing body of empirical knowledge provides discipline and catalyzes theoretical integration.

Neuroeconomists use many different empirical methods, though neuroimaging is currently the dominant methodology—especially functional magnetic resonance imaging (fMRI).2 Neuroimaging technologies enable researchers to measure brain activity during problem solving, game playing, choice, consumption, information revelation, and almost any conceivable type of economic activity. Neuroeconomic research also uses a diverse body of complementary data sources, including neuropharmacological exposures, cognitive load manipulations, response-time measurements, eye-tracking,
single-neuron measurement, transcranial magnetic stimulation (TMS, a technology that temporarily alters/disrupts normal cognitive functioning in a localized region of the brain), genotyping, gene expression, analysis of patients with neural anomalies (e.g., brain lesions), and the study of animal models (e.g., rats or monkeys).

There are five principal motivations for pursuing neuroeconomics research. First, some researchers are willing to study neuroscience for its own sake. Few economists share this view, but it is not uncommon in the community of neuroeconomics researchers.

Second, neuroeconomic research will likely provide a new way of imperfectly measuring human well-being. For example, neural activity has been shown to correlate with affect (e.g., Davidson et al. 1990; Davidson, Jackson, and Kalin 2000; Urry et al. 2004), anticipation and receipt of reward (Schultz, Dyan, and Montague 1997; Schultz 1998; Platt and Glimcher 1999, Glimcher 2003; Knuston et al. 2003; de Quervain et al. 2004), and the related economic concept of revealed preferences (Plaismann, O'Doherty, and Tangd 2007, Chib et al. 2009, Harris et al. 2011, Smith et al. 2014). Camerer (2007) writes that

Colander (2005) reminds us how interested classical economists were in measuring concepts like utility directly, before Pareto and the neoclassicals gave up. Edgeworth dreamed of a "hedonometer" that could measure utility directly; Ramsey fantasized about a "psychogalvanometer"; and Irving Fisher wrote extensively, and with a time lag due to frustration, about how utility could be measured directly. Edgeworth wrote: "... imagine an ideally perfect instrument, a psychophysical machine, continually registering the height of pleasure experienced by an individual. ... From moment to moment the hedonometer varies; the delicate index now flickering with the flutter of the passions, now steadied by intellectual activity, low sank whole hours in the neighborhood of zero, or momentarily springing up towards infinity. ... Doesn't this sound like the language of a wannabe neuroeconomist (except that it's more flowery). Now we do have tools much like those Edgeworth dreamed of. If Edgeworth were alive today, would be be making boxes, or recording the brain?"

A precise hedonometer is not available—and probably never will be—but neuroimaging techniques for imperfectly measuring hedonic states are available and are likely to dramatically improve with the resolution of imaging technologies. However, it remains to be seen if such hedonic measurements will be accepted by economists. It is possible that economists will prefer to exclusively use revealed preferences, leaving little or no role for correlated neural activity as a complementary signal of well-being. Nevertheless, it seems likely that neural activity and self-reports will eventually be accepted as measurements that complement standard methodologies for inferring well-being. After all, revealed preference is itself a noisy measure of preferences (Luce 1959; McCadden 1980), so neural measures are likely to be useful supplementary covariates.

Fourth, neuroeconomics will provide a new, powerful way to test economic models that ambitiously specify both how choices depend on observables and what computational mechanism leads to those choices. Of course, few economic models make

specific neural (or even cognitive) predictions. However, when economic models do make neural predictions, these predictions provide an additional domain for testing these theories (e.g., Frydman et al., 2014). Theories that successfully explain both choice data and neural data have many advantages over theories that only make choice predictions. A theory that explains both types of data will inevitably predict some surprising new effects of treatment variables on choice (besides the usual suspects of prices, information, and income). For example, Figner and others (2010) were motivated by neural fMRI evidence about the circuity of time preference computations (McClure et al. 2004) to predict that disruption of a specific brain region (dIPFC) would cause people to act more impatiently. As hypothesized, disruption in that area did actually change choices between immediate and delayed actual monetary amounts. This type of predicted treatment effect could have not have come from a framework without neural detail.

Fifth, neuroeconomics will improve our ability to predict behavior (Smith et al. 2014; Rietveld et al. 2013) and to design interventions that (1) change the behavior of others (e.g., Falk et al. 2013; Berkman and Falk 2013) and (2) manage our own appetites and drives. Consumption of coffee illustrates that the age of widespread biologically mediated self-management started long ago.

This essay does not argue that economics must embrace neuroscience. Economic models—even psychologically informed economic models—do not need neural foundations. For example, the work of Daniel Kahneman has barely made contact with neural accounts of cognition. Even recent work on "system one" and "system two" cognition uses biology only at a metaphorical level (Kahneman 2011).

More generally, there is no economic model that can be derived only with the benefit of a neuroscientific antecedent. There is no choice-based theory that can be studied only with neuroscientific data. However, neuroscience is useful because it can accelerate the pace of economic research.

As a profession, economists are extremely adept at conjecturing detailed competing theories. For example, there are many different theories of negative reciprocity. Is the preference for punishing defectors reputation driven? Is punishment motivated by a reputation concern coupled with the implicit belief that we are always being watched, even in an "anonymouse" laboratory experiment? Is punishment a knee-jerk response with evolutionary origins? Or do we get real instantaneous pleasure from punishing defectors? Distinguishing these theories with field data, or experimental choices, is challenging, though not impossible. Using a combination of choice data and neural data helps us make these conceptual distinctions, revealing that pleasure is at least part of the answer (de Quervain et al. 2004).
Neuroeconomics reflects a reductionist approach to social science that rests on two premises. First, explanatory systems for describing human choice behavior can be developed at neuroscientific, psychological, and economic levels of analysis. Second, there will be consistent and understandable mappings among these levels of explanation. If both these assumptions are correct, then studies of choice and decision at any of these levels can be used to inform and constrain explanatory models generated at other levels.

While the second of these premises remains controversial, it may be valuable to look to the history of the natural and physical sciences in assessing the likelihood that this will be validated by future empirical work. At the end of the 1800s a group of interdisciplinary scholars argued that quantum theory could provide a similar mapping between chemistry and physics that would allow for accelerated model development in both fields. The result was an enormously fertile period in the history of both of those disciplines and a permanent mapping between chemistry and physics. In the 1980s a similar trend could be observed in the relationship between biology and much of psychology. Only two decades later, just who is a neuroscientist and who is a psychologist can be very difficult to determine at a typical university. We believe that neuroeconomics may find itself today at the same crossroads. What this means for economics is that as these mappings are identified, a flood of algorithmic constraints from neuroscience will become available to economists. In a similar way, normative models and empirical behavioral models from economics will play a larger role in constraining neurobiological models.

An important barrier to the importation of these constraints into economics, however, is a lack of knowledge about the brain and unfamiliarity with neuroscientific vocabulary. The pages that follow therefore provide a basic primer on the vertebrate brain. For the neophyte interested in learning more about the brain, we recommend an introductory undergraduate text like Rosenzweig's *Biological Psychology*. For advanced material the reader is referred to standard graduate texts: *Principles of Neural Science* or *Fundamental Neuroscience*.

1.1 The Cellular Structure of the Brain

Like all organs the vertebrate brain is composed of cells, self-sustaining units that are typically about a thousandth of an inch in diameter. The brain is composed of two types of cells, called glia and neurons. Glia are support cells that play structural and metabolic roles in the maintenance of the brain. It is neurons, or nerve cells, that perform computations and serve as the foundation for mental function. Figure 3.1 shows a cartoon of a fairly typical neuron. The large bulbous center of the cell, or cell body, contains all the machinery necessary to keep the cell alive. Extending from the cell body are long, thin processes called dendrites. These extensions serve as the inputs to a nerve cell, the structural mechanism by which signals from other nerve cells are mathematically integrated and analyzed during neural computation. Also extending from the cell body is a single long, thin process called the axon. The axon serves as an output wire for the nerve cell. Axons may be quite long, in rare cases almost a meter, and nerve cells use these axons to broadcast the outputs of their dendritic computation to other nerve cells, even if those recipient cells are quite distant. They accomplish this connection to other nerve cells at the end of the axon, the tips of the axons making physical contact with the dendrites of other neurons. The cellular specialization at this contact is called the nerve terminal. The nerve-ending-to-dendrite junction allows a receiving neuron to add, subtract, multiply, divide, or even mathematically integrate the many continuous real-valued signals that its dendrites receive from the nerve terminals that impinge upon it.

To better understand this process, however, we next have to understand what it means for a nerve cell to send a "signal" to another nerve cell. Formally, signals in nerve cells are called action potentials (or, more colloquially, spikes), and they reflect a rather simple electrochemical process that is now well understood. Like all cells, nerve cells are surrounded by membranes that restrict the flow of chemicals both into and out of the cell (Figure 3.2). These membranes particularly restrict the flow of the positively charged atom sodium (the active ingredient in table salt). The critical feature that this restriction of flow creates is a stable equilibrium between two physico-chemical forces. The high concentration of sodium outside the cell sets up a diffusive force, which acts to equalize the concentration of sodium inside and outside the cell by driving sodium inside the cell. In opposition, an electrical force (involving positively charged atoms, which are overrepresented inside the cell at equilibrium) seeks to distribute the electrical charge equally by driving sodium outside the cell. Because of the construction of the membrane, these two forces reach a stable equilibrium state, at which the inside carries a negative charge with regard to the outside (a measure of the electrical force) which is opposed by an equal and opposite diffusive force. This equilibrium state is called the resting potential, and perturbations of this equilibrium induced by transient changes.
in the strength of the diffusive force serve as the conceptual centerpiece for all neural computation.

These perturbations turn out to be quite easy to induce. This is accomplished by opening and closing mechanical channels that span the membrane. Consider an openable ion channel (Figure 3.3), a hollow tube spanning the membrane with a hole that can be opened and which, when opened, permits a single sodium atom to cross the membrane. When a few hundred of these channels open on a dendrite, the result is that the dendrite is driven to a new equilibrium state by the movement of sodium, by diffusion, into the cell. This new equilibrium, one associated with a stronger diffusive force created by the open channels, is characterized by a commensurate change in the electrical force, in this case a shift to a higher voltage inside the cell. What opens these tiny ion channels? The answer is that chemicals, called neurotransmitters, transiently open channels of this type located on the dendrites. Sodium channels are not, however, the only type of channel located on the dendrites. Other classes of channels can cause the local voltage to transiently shift to a lower voltage equilibrium. By mixing and matching both channel types and neurotransmitters, we can, therefore, construct a kind of instantaneous mechanical adding machine. One type of neurotransmitter opens voltage-increasing channels. The more of this neurotransmitter, the more open channels, and the higher the voltage in that dendrite. Another type of neurotransmitter opens voltage-decreasing channels. The physical membrane reacts by effectively averaging these electrical fields and the instantaneous electrical field across the entire dendrite is thus an equilibrium state in which the voltage is a (surprisingly linear) readout of the sum of the neuron’s inputs.

The next step in neural computation within a single neuron involves a nonlinear threshold. The ion channels along the axon, it turns out, are different from those in the dendrites. These ion channels open to allow sodium to enter the cell freely whenever the voltage near them exceeds a fixed threshold. Now consider what this means. Whenever the dendritic "computation" (the summed voltage in a region of the cell) exceeds a fixed threshold, these voltage-gated sodium channels all open, thus driving the entire cell to

Figure 3.3: Ions channels.

a new equilibrium that has a much higher voltage. What this means in practice is that once the voltage of the cell is high enough to trigger the opening of voltage-sensitive channels in the axon near to the dendrites, those channels open. This, in turn, drives the voltage even higher up. That, in turn, activates adjacent channels in the axon that—although far away from the dendrite—are subsequently opened by this more proximal shift in the equilibrium voltage. What happens, thus, is a wave of equilibrium shifts, realized as a change in the electrical state of the cell, which propagates down the axon to the axon terminal. This wave of activation is the action potential and, importantly, it is always of the same voltage—the one specified by the equilibrium state induced by these voltage-sensitive channels. It is this mechanism that allows a cell to signal to the nerve endings, which may be a meter away, that the voltage of the cell body has crossed a specified threshold.

It is critical to recognize, however, that we have transformed a continuous and largely linear variable, membrane voltage, into a discrete single event. How, then, can nerve cells communicate the kinds of continuous real numbers that we need for meaningful computation? The answer is that the action potential itself is automatically reset after about a thousandth of a second. A second action potential is then generated if the voltage in the dendrites remains above threshold. Because of the mechanics of the channels, the higher the voltage in the dendrite, the sooner this second action potential occurs. The result is that the rate of action potential generation, the frequency with which action potentials are generated, is a roughly linear function of dendritic voltage. In practice this means that the number of action potentials generated per second by a cell is the continuous variable onto which any neural calculation must be mapped. This variable ranges from about 0 to 100 action potentials per second (or Hertz, the units of frequency) for a typical neuron. Note that this is a positively valued range, which imposes some interesting computational constraints. It means that for computations
where zero is a unique and fully cardinal object (for example, when setting muscle tone, which really does have a unique and cardinal zero), it is often the case that the brain uses pairs of neurons to encode separately positive [R+] and negative [R−] segments of the real number line. In other cases where notions of a "zero-point" lack uniqueness, it is often observed that the firing rate of a single neuron maps some segment of [R] that spans the zero-point—for example, by mapping some arbitrary firing rate such as 50 Hz to zero. Both encoding techniques have been observed in the mammalian brain for different subsystems. The range is also meaningfully finite because of limited precision at several points in the system. This can be overcome by dedicating more than one neuron to the encoding of a single real number, a technique also widely observed in the vertebrate nervous system.8

What happens to these action potentials next, after they reach the nerve terminal? The answer is that each action potential triggers the release of a quantity of neurotransmitter from each terminal (Figure 3.4). This neurotransmitter then diffuses across a truly tiny space, called a synapse, that separates each nerve terminal from the dendrite with which it communicates. Lying at the far side of the synapse, on the surface of the dendrite, are the same ion channels that we encountered previously when discussing dendritic function. These were the ion channels that were opened or closed by neurotransmitter molecules. These neurotransmitter molecules thus serve to open ion channels in those dendrites, causing the membrane of the postsynaptic cell to change voltage. This completes the passage of the signal through a single neuron and initiates a new computation at the next neuron. Neuronal computation is thus incremental and serial, with chains or networks of neurons performing parallel minicomputations in continuous time.

At a microscale, networks of neurons can be viewed as largely linear devices that can perform essentially any specifiable computation, either singly or in groups. And a large segment of the theorists and empiricists in neuroscience devote their time to the study of neural computation at this level. Neuronal-recording studies conducted by neuroeconomists in monkeys take advantage of this fact by measuring, one neuron at a time, the rate at which action potentials are generated as a function of either the options that a monkey faces or the choices that it makes. This allows them to test the hypothesis, for example, that to within a linear transformation, the neurons of a particular brain region encode the expected utility of an option in their spike rate. Of course, this observation implies that the kind of stable mapping rules that link chemistry and physics seem to reach from economic theory all the way down to a single neuron function, a point that this chapter seeks to make clear.

A final point that needs to be made before we leave the study of neurons is that all these processes—the generation of action potentials, the release of neurotransmitter, and the maintenance of dendritic electrochemical equilibrium—are metabolically costly. All these processes consume energy in the form of oxygen and sugars. In fact, this is one of the most costly metabolic processes in the human body. More than 20% of the oxygen and sugar we employ as humans is used in the brain, even though the brain represents only about 3% of the mass of the human body. So, it is important to remember that more neural activity means more metabolic cost. This has two important implications. First, minimizing this activity is a central feature of the cost functions that lie behind neural computation. Second, this metabolic demand is what is measured in most human brain-imaging (brain-scanning) experiments. To the degree that this metabolic cost is a linear function of neuronal activity, measurements of metabolic state reflect the underlying neural activity.

1.2 From Neurons to Networks

Studies of single neurons do show evidence of a clear mapping between economic theory and brain function, but it is also critical to understand the size of the human brain when one is considering the function of single neurons. The human brain is composed of about a hundred billion neurons. The average neuron receives, on its dendrites, inputs from hundreds of other neurons and, in turn, makes synaptic contacts at its nerve endings with hundreds of other neurons. If we were to imagine that 10⁶ neurons encoded (for example) expected utility and that those neurons were randomly distributed in the brain, then it would, in practice, be impossible to find those neurons if one were looking for them one at a time. The existence of a second hidden cost function, however, solves this problem for neuroscientists. It turns out that axons are particularly costly to maintain, and the result is that evolution has shaped the human brain in a way that minimizes total axonal length. To achieve axonal minimization, two principles seem to be widely adhered to in neural architecture. Neurons engaged in related computations tend to be grouped closely together, and communication between distant groups of neurons tends to employ highly efficient coding schemes that use a minimum number of axons.
These ex ante constraints, and a wealth of empirical evidence, now support the conclusion that the brain is a set of modular processing stages. Discrete regions of the brain typically perform specific computations and pass their computational outputs in a highly compartmentalized fashion. We need to maintain, however, a clear mapping between an analysis at the level of neurons and an analysis at the level of brain areas. Single neuron studies of decision making in monkeys are an example of this kind of mapping. Those studies often measure the rate of action potential generation in neurons that serve as outputs from brain areas and, as such, provide information at both of these levels of analysis.

Both the human and monkey brain can be divided into three main divisions based on converging evidence from developmental, genetic, physiological, and anatomical sources. These three divisions are, from front to back, the telencephalon, the diencephalon, and the brainstem (Figure 3.5). For the purposes of neuroeconomic study, the telencephalon, which all vertebrates possess in some form, will be our focus.

The telencephalon itself can be divided into two main and highly distinct segments, the cerebral cortex and the basal ganglia. Of those two, the more evolutionarily ancient structure is the basal ganglia.

The basal ganglia are composed of a number of subregions in humans that lie beneath the cerebral cortex. There are five of these regions that are most important. The caudate and putamen together are known as the striatum. The striatum—and in particular the lower, or ventral striatum—is of particular interest because activity here appears to encode the values of goods or options either present in choice sets under current consideration, which have been selected from choice sets, or which are actively being consumed (Levy et al. 2011). These areas receive extensive inputs from the frontal cortex and send almost all their outputs to two other nuclei of the basal ganglia, the globus pallidus and the substantia nigra pars reticulata. Speaking generally, the caudate and putamen are the main input areas of the basal ganglia, and the globus pallidus and substantia nigra pars reticulata are the main output areas. These output areas project, through a dedicated relay, back to the frontal cortex (the frontal region of the cerebral cortex). The core circuit of the basal ganglia is thus a loop that takes information from the frontal cortex and passes it back to the frontal cortex after further processing. The one remaining critical region of the basal ganglia is composed of the dopaminergic neurons of the ventral tegmental area and the substantia nigra pars compacta. These dopaminergic neurons receive projections from the output nuclei of the basal ganglia, as well as from many other areas and project both to the frontal cortex, and the input nuclei of the basal ganglia. The dopamine neurons have been of particular interest because there is now overwhelming evidence that these neurons encode a reward-prediction error signal (a kind of "reward shock" signal) appropriate for error correction–based learning (e.g., Caplin et al. 2010).

The cerebral cortex of the telencephalon is much larger than the basal ganglia in most primate species and is surprisingly homogenous in structure. Essentially all cerebral cortex is a six-layered sheet, with each of the layers showing very specific functional specializations. Layer 5, for example, always contains a specific class of cells that send axons out of the local region of cortex in which they are located to make connections with other distant regions in the cortex. This six-layered structure also means that the cortex is, at least structurally, a sheetlike device. This is obvious on gross inspection. The crinkled surface of the brain reveals that the cerebral cortex is a folded sheet that has been crumpled up to fit inside the skull. Beneath this folded sheet are dense runs of axons for interconnections between different places in the cortex. The sheet itself, composed largely of cell bodies, is referred to as grey matter. The dense runs of axons beneath it are referred to as white matter. For hundreds of years this sheet has been divided into four or five main subdivisions. These are not functional subdivisions but rather names of convenience. These main divisions are the frontal, parietal, occipital, and temporal lobes. Until recently the insula was considered an independent fifth lobe, although it is now often referred to as part of the frontal lobe.

Despite this customary division into lobes, until the twentieth century it was widely believed that the cerebral cortex was homogenous not only with regard to its anatomy but also with regard to its function. That conclusion was successfully challenged when it was demonstrated that subareas in the cortex served quite specific functional roles. Ultimately, this led the famous German Neurologist Corbinian Brodmann to conclude that there are tiny differences between the anatomical structures of different regions of the cortex, differences so small that they had been overlooked in the preceding two centuries. Based on these differences, Brodmann divided the cortex into a large number of numerically labeled subareas and cortical subareas.

The principal Brodmann-area subdivisions, at a functional level, divide the cortex into a series of areas with known interconnectivities and discrete functions. Both these properties are important. The connectivities are surprisingly sparse in the sense that each cortical area connects with only a few other areas, and these connections are
identical across normal individuals. The functions are often surprisingly discrete and now very well defined for some areas.

One final area that deserves mention anatomically is the amygdala. The amygdala is a portion of the telencephalon that is not classically considered part of the cerebral cortex or the basal ganglia. The amygdala is of particular interest because a wealth of studies now suggest that the psychological state of fear can be mapped to activation of the amygdala at least in animals. Generalizing from these observations has led to the suggestion that psychologically defined emotional states may well map to neurally localizable activity. The good news is that this seems to be the case for fear. The bad news is that there is no compelling evidence, as yet, for such specific localization of other psychologically defined emotions.

1.3 Summary of Neurobiology

For an economist interested in neuroscience, there are two central messages about the foundations of neuroscience: The first is that there seem to be clear and consistent mappings between events at the neural level and events at the behavioral level. The second, which follows from the first, is that the details of neurobiological function provide valuable constraints for economic theories. What this points out in turn is the critical need for basic neurobiological literacy amongst neuroeconomists.

2 FUNCTIONAL MRI: A WINDOW INTO THE WORKING BRAIN

An understanding of the human brain remains one of the greatest challenges of science. A primary impediment to meeting this challenge has been the ability to measure brain activity associated with mental function. Methods for noninvasively measuring electrical activity in the human brain, or electroencephalography (EEG), have been available for more than 80 years (Berger 1929). While these have produced useful information about the timing of some neural processes, the inhomogeneity of electrical conductivity across the brain limits their spatial resolution. Alternative methods that provide better spatial resolution are available, such as magnetoencephalography, or MEG (Hämäläinen et al. 1993). However, like EEG, these are restricted to measuring activity in the cerebral cortex (where there are sufficient numbers of geometrically aligned cells to produce a coherent signal), and thus miss the operation of deeper structures thought to be involved in reward processing (e.g., basal ganglia and brainstem neuromodulatory nuclei).

To date, the most successful efforts to measure brain activity take a less direct approach than recording neural activity from the scalp. These neuroimaging methods exploit an observation first made in the nineteenth century by Roy and Sherrington (1890): that neural activity is associated with increased blood flow to the active brain region. Although the precise mechanisms that mediate the relationship between neural activity and blood flow remain incompletely understood, this relationship has been used successfully to measure regional brain activity. The first of these methods to be developed involved the injection of radiotracers into the blood stream and the measurement of their distribution within the brain while the subject is engaged in mental activity (Gado, Phelps, and Coleman 1975). A major advantage in these methods, including positron emission tomography (PET) and single positron emission computed tomography (SPECT), is that they can be used to radioactively label agents that selectively bind specific neurotransmitter receptors. This has been especially useful in evaluating the function of neurotransmitter systems in psychiatric disorders. However, safety limitations on exposure to radioactivity restrict the spatial resolution of the brain activation measurement (about 5 mm) and the temporal precision of the measurement (roughly one observation per minute).

Another approach to measuring activity-related changes in blood flow uses optical recordings, which exploit signatures in the light of scattered light by blood-born hemoglobin. Noninvasive optical recordings use near-infrared spectroscopy (NIRS; Villringer et al. 1993) since light in this part of the spectrum penetrates the scalp. Although the high temporal resolution, relatively low cost, and portability of this method make it useful for some specialized applications (e.g., studying infant brains), it is still limited by low sensitivity and spatial resolution. By far, the most common approach currently used to measure human brain activity is functional MRI (fMRI).

2.1 Functional MRI and the BOLD Signal

The ability of MRI to detect changes in blood flow was first reported by three separate laboratories more than two decades ago (Bandettini et al. 1992; Kwong et al. 1992; Ogawa et al. 1992). This method relies on two fortuitous phenomena of physics and physiology: (1) oxygenated and deoxygenated hemoglobin molecules have distinguishable effects on the signals detected using MRI; and (2) increases in blood flow to areas of increased neural activity appear to exceed the demands of aerobic metabolism, paradoxically increasing the density of oxygenated hemoglobin. Exploiting these effects, MRI can be used to detect a blood oxygen level–dependent (BOLD) signal that is sensitive to relative changes in local blood flow. This, in turn, can be used to index neural activity: MRI can also be used to measure neural activity in other ways (e.g., using arterial spin labeling, or ASL, to directly measure perfusion; Williams et al. 1992) and to map anatomy (e.g., diffusion tensor imaging, or DTI, to image fiber pathways; Chien et al. 1990; Le Bihan, 1995). However, MRI using the BOLD signal is by far the most common technique used to learn about human brain function. This is most commonly referred to as fMRI.

Because the BOLD signal reflects changes in blood flow rather than neural activity directly, it is limited in several ways. Most importantly, it responds slowly to neural activity, first appearing about 2 s after a triggering event, peaking at about 4–6 s, and abating after about 10 s. While highly sensitive to even very brief neural events (lasting as little as 0.5 s), the BOLD signal reflects these events in a delayed and diffused manner. Analyses try to compensate for this nonlinear effect (by incorporating models of the typical hemodynamic response function, or HRF). However, these rely on assumptions that are not uniformly accurate or generalizable, and, therefore, compromise precision. Because it reflects hemodynamic changes rather than direct neural activity, the BOLD signal is also limited in spatial resolution (with a current practical lower limit of about 1 mm).

These limitations notwithstanding, the method has proven remarkably successful in identifying neural activity associated with a wide array of mental processes. These range from visual perception and the control of overt motor actions, to subterraneous ones such as decision-making, decision-making, inference and emotional evaluation. The ability of fMRI to localize such activity has been validated by comparing results with those from complementary methods, including other imaging methods, as well as simultaneous recordings of the BOLD signal and direct electrical recordings in
nonhuman primates (Disbrow et al. 2000; Logothetis et al. 2001) and in human patients with implanted electrodes (Mukamel et al. 2005). Because it is noninvasive and owing to the wide availability of MRI scanners, fMRI has become a mainstay of research on human brain function.

2.2 Design Considerations

Scanning Parameters. Several factors govern the effectiveness of an fMRI study, ranging from pulse sequence design (how the MR scanner is programmed) and the alignment of scans within the brain to the design of the behavioral paradigm used to engage mental functions of interest. Choice of pulse sequence has a strong impact on the nature and quality of the data acquired but is beyond the scope of this article (the interested reader is directed to Haacke et al 1999). However, it is worth noting that a typical study involves longitudinal samples from about 30,000 to 100,000 brain loci (about 1 to 3 mm isotropic each) taken every 1 to 2 s for about an hour. It is also worth noting that both pulse sequence design and scan placement can affect signal dropout (known as susceptibility artifact). This occurs in brain areas that are near air passages (such as the sinuses), including one of particular relevance to decision making and valuation such as the orbitofrontal cortex (lower surfaces of the frontal lobes) and amygdala (along the inner surface of the temporal lobes). Scans can be tuned to compensate for these effects, but this can sacrifice coverage or sensitivity in other brain areas (akin to the problem of backlighting in photography). Newer hardware designs that address this problem, such as parallel imaging with phased array coils, are beginning to emerge (akin to high-dynamic-range [HDR] imaging in photography) and are becoming increasingly commonplace.

Experimental Design and the Subtractive Method. Equal in importance to scanning considerations is the behavioral design of the experiment. The most powerful studies use within-subject comparisons, enabling the researcher to control for individual differences and better generalize to the population at large. The most common approach to identifying brain areas associated with a particular cognitive function uses within-subject subtractive logic (Donders 1868): Contrast an “experimental condition” in which the participant is performing a task of interest (for example, a decision between two options) with a “control” condition in which the participant is required to process all the same stimuli and responses but does not engage in the process of interest (for example, observe the choice options, but simply press a button as soon as they are seen, without choosing between them). Areas of brain activity associated with the process of interest are then identified by subtracting signals observed in the control condition from those in the experimental condition. This is usually done using simple t-tests or, for factorial designs, multiple regression or analysis of variance (ANOVA). The potential flaws of this design are obvious (e.g., the subtraction is most informative if the sensory and motor processes are carried out in precisely the same manner in the control and experimental conditions). However, as a matter of practice, this approach has been surprisingly successful, as evidenced by converging evidence using a variety of other methods.

Parametric Designs. A variant on the subtractive method that is more sensitive is the use of a parametric design that relies on additive factors logic (Sternberg 1969). In this case, a series of conditions are designed to engage the process of interest in an incremental or graded fashion (for example, an increasingly difficult decision). The data are then analyzed to identify areas showing an incremental or graded increase in the BOLD signal that corresponds to the experimental manipulation (e.g., Braver et al. 1997). This is usually done using regression to identify areas in which the BOLD signal is predicted by regressors that describe the experimental manipulation(s). Like subtraction, these parametric designs are also sensitive to critical assumptions (e.g., about the functional form of neural responses and the BOLD signal’s response to the experimental manipulation). Once again, despite potential pitfalls, this approach has proven to work surprisingly well, in the sense of producing results that are later corroborated by other methods.

Neural Adaptation. A variant on the parametric approach takes advantage of the well-documented phenomenon of repetition suppression, a form of adaptation or habituation at the neural level (Grill-Spector and Malach 2001; Kricheff et al. 2006). The neural response to a preferred stimulus decreases when the stimulus is repeated (over seconds or even minutes). The primary advantage of this method is that it can be used to distinguish neural responses to different processes that would otherwise fall below the spatial resolution of fMRI. For example, imagine that two populations of neurons, which are differentially responsive to each of two different categories of visual stimuli, coexist within a brain area but that these populations of neurons are interleaved at a spatial scale that cannot be distinguished in the BOLD signal from this region. By differentially adapting the region to the two categories of stimuli (i.e., repetitively presenting one more than the other, and then the reverse, and then both), it is possible to demonstrate that the two different populations of selectively responsive neurons exist within that region.

Trial Sequencing. Two additional and critical design considerations are the pace of the experimental task and how experimental conditions are organized across trials. Considering only the BOLD signal, it is ideal to separate every trial event (e.g., stimulus presentation, decision, and motor response) by at least 6 and preferably as much as 12 s. This allows direct discrimination of the BOLD response to each event. However, this not only compromises the rate of data collection but also can interact with cognitive variables (such as participants’ strategies and/or motivation in performing the task). Methods have been developed to analyze more rapid event-related designs (Baraças and Boynton 2002; Burock et al. 1998; Friston et al. 1999; Liu, 2004), with events occurring as quickly as every 3 to 4 s. However, such analyses must make assumptions about the form of the hemodynamic response function (HRF) in order to “deconvolve” the BOLD signal response to a given event from overlapping effects of previous ones. Empirical studies suggest that the form of the HRF appears to be moderately consistent both across brain areas and individuals—at least within regions in which it can be directly estimated (e.g., primary sensory and motor cerebral cortex)—and so most approaches use a prespecified, canonical approximation of the HRF. However, the extent of variation in the HRF is not yet fully understood, especially for regions in which it is difficult to measure (e.g., those supporting more abstract cognitive functions such as decision making), and thus caution is warranted. This is compounded by the fact that the HRF is best characterized in response to brief, punctuated neural events. However, many cognitive processes can be protracted (e.g., complex forms of decision making) and therefore are more difficult to model using standard rapid event-related techniques. Furthermore, the pace of the design can interact with the adaptation effects just discussed. Although some progress has been made in this area (e.g., Donaldson et al. 2000; Greene et al. 2001; Vischer et al. 2003), including the use of finite impulse response (FIR) functions that are agnostic to the HRF shape, it remains a challenge for BOLD-based imaging methods.
Blocked Designs. The preceding discussion assumes that each trial is analyzed separately, responding to controlled or behaviorally generated events (called “event-related” designs). However, sometimes it is advantageous to block trials by experimental condition, so the appropriate analysis looks for sustained activity throughout an entire block of similar events. These block designs can provide greater power to detect an effect if the mental processes involved transpose over a longer time frame (e.g., active maintenance of a mental set; Braver et al. 2003). However, the BOLD signal tends to slowly drift over time (at the scale of minutes) for reasons that can be unrelated to the experiment (e.g., instability of the scanner), the effects of which can become inextricably confounded with block effects.

Naturalistic Designs. Finally, it is worth mentioning that a relatively new direction is to use more naturalistic experimental designs, in which participants engage either in real-world tasks (e.g., reflect on the day’s events) or common activities (such as movie watching). The approach to interpreting such data relies heavily on correlation analysis, either between brain regions within an individual (to identify regions of brain activity that covary, presumably reflecting task-relevant circuits), or across individuals (to identify regions that vary similarly in response to similar stimuli conditions). For example, Hasson et al. (2004) show that over large areas of the brain, there are remarkably high correlations in brain activity across individuals watching the same movie. These approaches may be moving closer to observations of brain function at a level comparable to the complex dynamics involved in naturally occurring decision making processes.

2.3 Image Analysis

The data from fMRI experiments often require extensive preprocessing in order to minimize the impact of nuisance variables (such as machine noise, head movement, etc.). Most of these methods are now standard. However, there are several important considerations that warrant discussion here, including alignment of imaging data across individuals for group averaging, corrections for multiple comparisons, exploratory analyses versus hypothesis testing, and univariate vs. multivariate methods.

Group Averaging. Averaging imaging data across individuals is a standard approach in fMRI and is often required to improve power to detect subtle effects. To perform group averaging, the brains of each individual must be appropriately jointly aligned. This is complicated by the fact that human brain anatomy varies considerably across individuals. There are several methods for group alignment that vary in sophistication by how they morph brain maps onto one another (Fischl et al. 1999; Fischl 2012; Klein et al. 2009; Talairach and Tournoux 1988; Woods et al. 1998; van Essen et al. 2001). However, all these methods face a common limitation: they attempt to align brains according to anatomic features, such as the shapes of the cortical folds (gyri and sulci). Unfortunately, this is a topologically challenging problem. Furthermore, the relationship between function and anatomic structure is not identical across individuals. For example, while the vertical meridian separating the left and right visual fields typically lies within the same fold of primary visual cortex (the calcarine fissure), its precise location (i.e., whether it lies along one bank of the fold or the other) is known to vary considerably across individuals. Thus, aligning anatomic landmarks may not succeed in precisely aligning parts of the brain that perform the same function. This can introduce noise into group averaging and limit spatial resolution. Methods are currently under development that align images based on functional (rather than anatomic) landmarks (e.g., Sabuncu et al. 2010; Chen et al. 2015). Success in this effort should considerably improve the sensitivity and spatial resolution of fMRI while also providing new information about features of functional organization that are universal across brains.

Exploratory Analysis and Multiple Comparisons. Whether analyzing images from a single brain or multiple brains, most methods apply variants of ordinary least squares (or the “general linear model” when referred to by neuroscientists). The regression model is estimated separately for each voxel (volumetric pixel) within the image. This step is an exploratory analysis designed to determine which voxels show a significant effect of the experimental manipulation. Voxels that meet a specified level of statistical significance are then shown (usually by colors indicating their level of significance) in an activation map. One problem with this approach is that image sets are usually made up of large numbers of voxels (at least 10,000 and sometimes more than 100,000). Thus, the threshold used for statistical significance must be corrected to take account of this massive number of comparisons and avoid a preponderance of type I errors (“false positives”). The simplest way of doing this is to divide the threshold by the number of comparisons (Bonferroni correction). However, this risks being overly conservative (resulting in type II error, in which a genuine effect does not survive this correction and appears to be insignificant). This has driven the development of more sophisticated methods, such as cluster-size thresholding and false discovery rate (FDR) analyses that take advantage of the fact that voxels showing truly significant effects are likely to be contiguous with one another (Forman et al. 1995; Poline et al. 1997; Genovese et al. 2002). However, these methods can be complex, and subject to misuse (Smith and Nichols, 2009; Vul et al. 2009). Therefore, it is important to attend carefully to the assumptions they make (e.g., about the independence of voxels).

Hypothesis Testing and Regions of Interest. An alternative to the use of whole brain, exploratory analyses is to specify a priori, regions of interest (ROIs) in which effects are expected to occur and then restrict hypothesis testing to those areas. This limits the number of comparisons and thus lowers the expected false discovery rate. However, when a significant effect is observed in an analysis restricted to a given ROI, it is not possible to assert that the effect is specific to that brain region since others have not been tested. In practice, the best studies use a combination of the methods described previously, initially using exploratory methods to identify regions of activity and then confirming positive findings in subsequent experiments using an ROI-based, hypothesis-testing approach. The most solid findings come from a sequence of experiments and methods (ideally from different research groups) proceeding in this way.

Correlational Analyses. The methods described so far all focus on identifying where and how changes in neural activity occur in response to experimental manipulation. However, there are several important limitations to this general approach. The first is that neural activity may not be the only, or even the most important, signature of neural function. Rather, how a brain area interacts with other brain areas may be equally or even more important. Imagine, for example, an area that responds differentially to two different categories of stimuli; but it does so not in its level of activity, but rather by communicating with different areas in response to each type of stimulus. In this case, an analysis of activity of the brain region will fail to reveal this selective response. However, this can be identified using correlation analysis. One current limitation of correlation analyses is that they are computationally expensive (the number of computations goes up exponentially with the number of voxels in...
the scan and the time scale and phase lags over which correlations are computed. To deal with this, analyses typically focus on a small set of seed ROIs preidentified using activation-based analyses (often referred to as "functional connectivity analysis").

However, there is an inherent circularity in this approach since it assumes that the seed region can be identified initially by its activity, which, as noted before, may not be the case. With increases in computational power, it has now become possible to conduct whole-brain correlation analyses that permit unbiased functional connectivity analysis. These methods have been shown to reveal areas of function not able to be identified with standard methods (Wang et al. 2015). Such approaches, coupled with other MRI-based methods of studying neural pathways (e.g., DTI), are likely to reveal increasingly sophisticated information about the interaction between different brain systems (Turke-Browne 2013). Correlation analyses can also be used to examine the relationship of brain activity to other physiological variables of interest (such as galvanic skin response, pupil diameter, eye movements, etc.), behavior (such as reaction time, accuracy, decision outcomes, etc.), and psychometric and demographic factors (such as personality, age, gender, etc.). Such analyses have the potential to provide valuable information about the relevance of observed patterns of neural activity to mental function and behavior (Friston et al. 1997). However, such analyses also carry risks that have been the subject of some attention (Kriegeskorte et al. 2009; Vul et al. 2009). In particular, such analyses must attend to the same problem of multiple comparisons (in this case, the number of correlations) as other analysis methods.

Multivariate Pattern Analysis. A second important limitation of standard approaches to image analysis is the focus on discrete regions rather than distributed patterns of activity. Perhaps the most important recent development in the analysis of neuroimaging data has been the move from univariate methods to multivariate pattern analysis (MVPA). Univariate methods, such as those described before, analyze images voxel by voxel, seeking to identify peaks of activity (i.e., voxels or voxel clusters that exceed a statistical threshold). However, this approach certainly does not correspond to how the brain functions. Rather, computational activity is distributed over many regions, some of which may be more subduly engaged—but no less important—than others. This has recently been addressed by the application of machine learning classifier algorithms (Norman et al. 2006). These are "trained" on one set of imaging data to identify distributed patterns of activity that reliably predict specific mental states or behaviors (e.g., the perception of a particular type of object or a particular outcome of a decision). The patterns of activity identified in the training data are then tested on a separate set of data to determine the generality of their ability to predict mental states or function. Such methods have proven to be successful in a variety of domains, including the ability to identify the orientation of a line (Kamitani and Tong 2005) or class of objects being visually observed (Haxby et al. 2001), the class of an object being recollected (Polyn et al. 2005), the syntactic class of a linguistic stimulus (Mitchell et al. 2008), and the value of public goods in a designed mechanism of exchange (Krajibich et al. 2000). It has now become possible to identify distributed patterns of activity using first- and second-order correlations to infer the relationship among them to predict behaviors associated with each (Kriegeskorte et al. 2008). Furthermore, the same MVPA methods that have been used to identify patterns of activity can be used to identify patterns of correlations that may reveal interactions among brain regions that are specific to particular mental states or computations (Wang et al. 2015).

Realtime fMRI (rtfMRI). Perhaps the most exciting direction of progress—both for scientific and applied purposes—is the dramatic improvements that are being made in the speed with which fMRI data can be analyzed. Typically, fMRI analysis takes place offline, after the scanning session has completed, and many of the most advanced forms of analysis can take hours to days—and, in some cases, even weeks—to complete. However, recent advances in computing have begun to change this, making it possible to analyze fMRI data in real time. This is having a transformative impact on how brain imaging is carried out and how it can be used. For example, there have been several studies using rtfMRI to provide participants with feedback about their mental states in a "closed-loop" training design—a realization of the widely hailed but until now undelivered promise of "biobehavioral feedback" dawning in the 1960s. The successful use of rtfMRI for this purpose has already been demonstrated in some clinical domains (e.g., pain control (DeCharms et al. 2005) and depression (Schuyer et al. 2015), as well as in the improvement of healthy function (e.g., attentional control (DeBettencourt 2015)). Realtime feedback can also be exploited to test the causal role of different brain systems in mediating a given behavior by comparing the effects that feedback from different areas have on learning and behavior (e.g., Shibata et al. 2011). Online analysis of fMRI measurements also opens up new opportunities for more powerful experimental methods, paralleling an approach that has been a mainstay of research in other domains, from systems identification in control theory to patch clamping in neuroscience and staircasing in psychophysics. Adjusting experimental variables in response to online measurements can be used to optimize their sensitivity and/or stabilize confounding processes in order to isolate and examine others (e.g., Sulzer et al. 2013; Stoebel et al. 2014). For example, such adaptive designs have been used to characterize the response properties of ventral visual cortex by searching a stimulus space for stimuli that most robustly activate a region of interest (Leeds, Pyles, and Tarr 2014) and to trigger experimental stimuli based on the strength of measured neural representations to show that a particular brain state encourages the formation of long-term memory (Yoo et al. 2012). These methods represent the leading edge of neuroimaging research, promising to greatly enhance the sensitivity with which fMRI (and other methods) can be used to track neural activity underlying ongoing mental processes in human participants.

2.4 Summary of Functional MRI.

Neuroscientific data offer a valuable source of information concerning the factors and processes that influence economic behavior. The most commonly used method for generating such data is fMRI. Although it is subject to important limitations—not the least of which are its spatial and temporal resolution—it has already begun to provide important new information about the neural mechanisms involved in valuation and decision making. The most common approach to experimental design and analysis of fMRI data is the use of subtractive logic to identify localized regions of neural activity associated with processes of interest. However, more-sophisticated approaches are coming into increasing use, including correlation-based analyses to identify interactions among brain regions, the use of multivariate methods to identify distributed patterns of activity associated with mental states and processes, and realtime methods that use such data as feedback to the participant and/or for adaptive adjustment of the experimental design. These methods are continuing to evolve, with new ones on the horizon. These improvements will make it possible, with increasing power and precision, to identify,
of the biological basis of prospect theory (or EU as well). For example, a finding that gains and losses are encoded in different brain areas would support the hypothesis that a "kink" between gains and losses exists and is driven by a shift in underlying neural processing at zero. Such a finding also suggests new hypotheses about what kinds of experimental treatments, descriptions, and personal traits will affect loss aversion.

An implication of reference dependence in prospect theory is that descriptions of choices which are equivalent in their consequences but differ in their reference point, could lead to different choices. An early fMRI study looked at brain activity during response to loss and gain framed choices for monetary gambles (De Martino et al. 2006). They looked for an interaction effect between the domain of outcomes (gain or loss) and the choices of sure things versus risks.

They found activity in the amygdala in response to the typical choice (a sure thing for gains and a gamble for losses). Dorsal medial cingulate cortex was also differentially activated in the atypical choices (gambling over sure gains and accepting a sure loss).

A further study showed that subjects with a particular genetic neurotransmitter variant (short-short-type alleles of 5HTT, a gene promoter for serotonin) showed larger framing effects (Roiser et al. 2011). Furthermore, the pattern of fMRI activity in amygdala in response to framing is evident in the SS allele subjects but is completely absent in subjects with different genetic makeup. While this is just one study, it shows how neuroscience could potentially identify a particular type of individual difference in sensitivity to economic framing effects that is nonobvious (and has a surprising interpretation on terms of emotion rather than logic or cognitive skill).

A key component of prospect theory is loss aversion, the disproportionate disutility from losing relative to equal sized gains. Until recently, most evidence of loss aversion in decisions is inferred from human choices between monetary gambles with possible gains and losses. However, there is also behavioral evidence of loss aversion in monkeys trading tokens for stochastic food rewards (Chen, Laksminarayanan, and Santos 2006) and associated evidence of endowment effects in monkeys (Laksminarayanan, Chen, and Santos 2008).

An early fMRI study (Tom et al. 2007) showed comparable neural activity in several value related brain regions during evaluation of gambles. That activity is stronger as gains increase, and also stronger as losses decrease (e.g. going from $10 to $5 is a loss decrease). The regions identified by a search of the whole brain were then used to explore individual differences. They found that neural loss aversion—the difference in brain response to reduced dollar for dollar, relative to potential increased gain—was strongly correlated ($r = 0.85$) across individuals, with the degree of loss aversion inferred behaviorally from choices among gambles. While that study indicated a common basis for reduced loss and increased gain, other studies indicate different locations of brain activity for loss and gain. For example, using fMRI Yacubian et al. (2006) found gain activity in ventral striatum and loss activity in amygdala and temporal lobe regions lateral to the striatum. Consistent with this suggestion from fMRI, two patients with selective bilateral amygdala lesions exhibited no loss aversion in choice behavior (De Martino, Camerer, and Adolphs 2010).

Prospect theory also posits that attitudes toward risk depend not only on valuation of outcome utility but also on weighting of likely outcomes in the process of decision. A simple way to account for these effects is by weighting an objective likelihood of an outcome, \(p(X) \), by a transformed function \(\pi(p(X)) \). Several parametric weighting functions have been suggested and estimated (e.g., Abdellaoui, L'aridon, and Zank, 2008).
2010), but we focus on the simple one-parameter function \(\pi(p) = 1/\exp([-\ln(1/p)^2]) \) (Prelec 1998). This function is equivalent to linear weighting of objective probability when \(\gamma = 1 \), has increasingly nonlinear infection for \(\gamma < 1 \), and always rotate around a pivotal probability \(p_e \approx 1/e = 0.37 \) (at which point \(\pi(p) = p_e \)). A field study of game shows and a huge sample of horse racing bets (Snowberg and Wolters, 2010) indicate overweighting of low probabilities too (see Barberis’s (2013) brief review).

The neural literature has identified some biological correlates of nonlinear probability weighting, but the findings are relatively less consistent—relative to those reviewed for loss aversion—in terms of the neural locations of activation patterns. An early fMRI study using a titration procedure to match gambling value (Paulus and Frank 2006) linked inferior frontal \(\pi(p) \) to activity in the anterior cingulate cortex (ACC).

A later fMRI study by Hsu et al. (2009) found evidence for nonlinear \(\pi(p) \) encoded in striatal reward areas. We will discuss the experimental methods in their paper in some detail, to help make neuroeconomics methods more concrete for readers.

First note that fMRI has a low signal-to-noise ratio, so large samples of subjects—such as trials per subject—are needed to detect genuine effects but minimize false positives. (The trend is toward somewhat larger samples (e.g., \(N = 30 \), which also powers the study of individual differences.) Second, every aspect of the screen display and subject response activates the brain; so great care is taken to minimize what is on the screen and make motor responses simple and balanced. (Typically, subjects press buttons on a box to respond, and the buttons that are pressed are balanced across subjects.) Third, between events at which interesting neural activity is likely to occur (such as a choice), an intertrial interval (ITI) of 4 to 10 s is usually inserted, with a central fixation cross to direct visual attention, allowing the BOLD blood-flow signal to return to baseline. Fourth, sessions typically last 30 to 50 min (at which point subjects often become intolerable or habituated to a task, which reduces brain signals). Fifth, there is likely to be more voluntary-sequence selection bias (because fMRI is claustrophobic and noisy), so it is useful to do out-of-scanner behavioral studies to establish that behavior among fMRI volunteers and others is similar.

The good news is that any stimulus that can be shown on a computer screen can be seen by the subjects. So most types of economics experiments can be done in a comparable form in fMRI (subject to the constraints given). For example, in Hsu et al. (2009), a simple gamble is displayed, which shows a \(p \) chance of earning \(\$X \) (with \(p \), \(\$X \) varied to enable estimation of \(\pi(p) \) and \(u(X) \)). On 8% of the trials, there is a "catch" screen asking whether the probability shown was above or below 40%. These trials waste time, but they help ensure that subjects are paying attention. After one gamble is presented, that gamble and a new gamble are shown, and the subject makes a choice. In this study, the choice data are used to estimate a stochastic prospect-theoretic-choice model using typical maximum likelihood (MLE) procedures. The subjective value from MLE and the parameters \((p, \$X)\), are then used to analyze how brain activity at the time of the presentation of the initial gamble is associated with the gamble features and MLE-estimated prospect-theoretic value. This type of analysis of the brain activity, using "computational regressors" is an important advance over earlier, simple "subtractions." Subtractions look for regions that are more active during trials of type A and type B. There are typically many false positives (e.g., a difference in visual cortex because the A and B screens look a little different.) In general, it appears that when a computational regressor—such as a prospect-theory value that is different on each trial—is inferred from behavior and then correlated with brain activity, false positives are reduced (because it is unlikely that random activity will be coincidentally associated with variable utilities).

Using this method, Hsu and others (2009) discovered neural activity in ventral striatum in response to valuation of different outcome probabilities in which the neural response function matched reasonably closely the infection derived simply from analysis of choices. Hsu and others also found a modest neuroemertic link between variation across subjects in behavioral nonlinearity of their weight functions inferred from choice, and subject-specific neural activity associated with nonlinearity. However, Tobler and others (2008) found signals associated with nonlinearity only in left DLPFC (dorsolateral prefrontal cortex).

Takahashi and others (2010) correlated D1 dopamine receptor density, imaged using PET, with more linear probability weighting (which is also associated, in the estimate of Prelec (1998) function, with higher weights on all probabilities and, hence, more attractive valuation of gambles). Finally, Wu and others (2009) used a motor task in which "risky choice" is equivalent to reaching very rapidly (<700 ms) to a narrow physical target in order to get a large reward (a slow reach earns nothing).

They estimate that low probabilities are actually underweighted in the implicit motor valuation of reward. Their finding is an intriguing reminder that much human activity involves sensory and motor actions, and the valuation guiding those actions could work differently than abstract evaluation of mortgages or job candidate resumes.

Evon and Harvery (Chapter 10) summarize many studies comparing choices over risks that are described abstractly rather than learned from experience. In learning paradigms, subjects indicate a modest tendency to underweight low probabilities (the opposite of the usual pattern from descriptions) after controlling correctly for sampled experience. Psychological and neural measures could help explain the mechanism behind this difference in choices. Indeed, FitzGerald and others (2010) found stronger fMRI activity in mOFC (lateral ventral putamen) in learned (described) choice. The difference in activity regions supports the hypothesis that learned and described risks are processed differently.

3.3 Causal Manipulations

Conventional economic analyses typically draw predictive power by assuming stability of preferences, using previous choice data to infer preferences (e.g., by estimating demand elasticities) and then—holding preferences fixed—predicting a comparative static change in choices based on changes in information, prices, or income. However, as the neural circuitry underlying choice becomes better understood, it will be possible to causally influence neural computations reliably and possibly change choices as a result. Such "neural comparative statics" will test how well the circuitry is understood and are also likely to show how some unconventional variables that are not in standard theory influence economic choices. Indeed, several studies have already shown such causal influences in choice among risky financial gambles.

Risk aversion seems to be causally increased by experiencing stress (induced by immersion of hands in cold water; Forcelli and Delgado 2009); stimulation ("up-regulation") of DLPFC (right dorsolateral prefrontal cortex) using tDCS (transcranial direct current stimulation; Fecteau et al. 2007); seeing negative affect images before choice (Kuhn and Knutson 2011); and eating food (Symmonds et al. 2010). Risk seeking seems to be causally increased by disrupting right DLPFC (Knott et al. 2006); stimulation using tDCS in older adults (Boggio et al. 2010); and lowering serotonin in macaques by depleting tryptophan (Long, Kuhn, and Platt 2009). Loss aversion can be down-regulated by a perspective-taking instruction to "think like a trader" and combine losses and gains mentally (Sokol-Hessner et al. 2009). Note that fMRI indicates this
down-regulation works, to some extent, by increased DLPEC activity during down-regulation and corresponding reduction in amygdala activation in response to loss (Sokol-Hessner et al. 2013).

Observe that in the previous paragraph, the studies marked (*) did not record direct measures of brain activity, so those studies did not report direct evidence of causal changes to brain activity on risk-taking behavior. However, the presumption is that the causal treatment is very likely to have changed brain activity (in a way that is, in principle, observable by further study). Indeed, given the expense and analytical challenges of fMRI, a good method for studying interesting causal effects on risk-taking behavior (or any other economic behavior) is to start with a treatment that is easy to implement, establish robustness and boundaries of causal effects, and only then look for corresponding causal changes in neural activity.

There are two lessons from these biologically causal experiments: First, exogenous changes to the neural circuitry (observed directly or presumed in advance of direct observation) can directly change choices. These effects are not due to changes in prices, information, or constraints (in any typical sense). These effects therefore suggest a possible expansion of the rational choice view in economics to include computational circuitry. Eventually, we could understand the conditions under which that computational circuitry produces choices that approximate constrained-optimal rational choice, as in consumer theory, and conditions under which choices will deviate most (and at high cost).

Second, the ability to cause change is useful as a tool to test the depth of understanding of how the circuitry works in general. And, ideally, some of these results will invite new economic hypotheses about how exogenous changes in the economic environment will influence neural computation and hence predict changes. For example, if causally-disrupting a brain region involved in inhibition and self-control reduces self-control, and external events also place a burden on activity in that region (mimicking disruption), then one can hypothesize that the disruptive events will affect economic choice. What these new hypotheses are, and how well their effects can be seen in highly aggregated data, remains to be seen.

3.4 Logical Rationality and Biological Adaptation

Finally, some neuroeconomics results ironically highlight a conflict between notions of rationality. In at least three studies, patients with brain lesions or disorders behave more consistently with SEU or EU than neurotypical subjects do. A group of patients with OFC brain lesions do not exhibit the Ellsberg paradox (Hsu et al. 2005). Another pair of patients with amygdala damage exhibit no loss aversion (De Martino, Camerer, and Adolphs 2010). And autistic patients exhibit reduced gain-loss framing effects (De Martino et al. 2008). (However, other studies show that lesion patients exhibit more violations of transitivity (Fellows and Farah 2007) and GARP (Camille et al. 2011)).

In the first three examples, if SEU and EU axioms (including description invariance, or no framing change) are principles of logical rationality, then why would damage to the brain cause behavior to be abnormally closer to those logical principles?

An intriguing possible answer is that neurotypical brains are adapted to solve evolutionary challenges of survival and reproduction, while conserving phylogenetically old regions inherited from other species and adding "kludges" (Ely 2011). There is no reason to think that kludged evolutionary adaptation will lead to neural processes that obey logical rationality in judgment and choice. Put differently, the normative appeal of logical principles does not imply that logic will guide neurotypical behavior—in fact, quite the opposite will typically be the case when normative logic and descriptive behavioral principles differ.

The neural evidence also suggests that there could be two paths to logically rational choice: The abnormal path is that dysfunction in neural processes disable the neurotypical behavior that violates logic. For example, the patients with OFC damage do not integrate negative emotional information from the amygdala, which is (neuro)typically triggered by Ellsbergian ambiguity; so they treat ambiguity and risk as equivalent. The hyper-rational path is that special intuitions, training, or skill create a goal-directed symbolic valuation process that overrides the neurotypical response and implements logical behavior. Experiments using a mixture of subjects who are neurotypical, have specialized damage, and have extraordinary training could make it possible to distinguish these two routes to logical choice and contrast them with typical logic-violating choice.

3.5 Summary of Risky Choice

Neuroeconomic studies of risky choice represent a healthy synthesis of parametric modeling (from economics and decision theory) and broad types of neural measurement from neuroscience (using fMRI, lesions patients, PET, and other methods). One clear finding is that risk and reward are reliably encoded in insula (risk) and striatum and medial OFC (reward). Since the insula is activated by many felt emotions, this finding supports the hypothesis of "risk as feelings." fMRI and lesion studies of prospect theory indicate a potential role for emotion that is not yet well understood. The amygdala is known to be associated with rapid "vigilant" processing of threat (as well as social emotion and, sometimes, reward). Amygdala activity is associated with framing shifts and with loss aversion. Moving beyond simple brain-behavior associations, there is a variety of evidence of how exogenous changes in biological states, such as stress, food satiety, and visual images, change risk-taking behavior. These studies do not yet fit together, but they suggest a shift away from the idea that risk taking is a stable behavioral propensity to the idea that preferences are "state dependent" (in a way familiar from decision theory) and depend on mental and biological states. This is not really a radical departure from standard economics, but understanding mental state dependence requires a lot more data and an understanding of when state changes are triggered by external stimuli (e.g., an advertisement or stressor) and how internal adjustment to such externalities works.

4 INTERTEMPORAL CHOICE AND SELF-REGULATION

Intertemporal preferences continue to be one of the most active research topics in the field of neuroeconomics. In the past decade, researchers have identified a large group of empirical regularities, many of which are related to neural mechanisms. We begin this section by summarizing the body of empirical results in the intertemporal choice literature, including neuroimaging results.

There is no consensus on the theoretical interpretation of these empirical regularities (e.g., Rustichini 2008). The competing theories can be divided into three classes: multiple-self models with selves that have overlapping periods of control (e.g., Freud 1923; Thaler and Shefrin 1981), multiple-self models with selves that have nonoverlapping periods of control (e.g., Strotz 1955; Laibson 1997), and unitary-self models
may swamp the underlying goal of measuring time preferences. In summary, the experimental paradigm that studies money-now versus money-later choices is rife with confounds, challenging the usefulness of the paradigm as a tool for eliciting time preferences (White et al. 2013).

2. **Static choice problems with temptation goods generate preference reversals.** For example, Read and Van Leeuwen (1998) ask their subjects to choose a snack to be eaten one week later. Subjects tend to choose healthy snacks. One week later, the subjects are told that the researchers no longer have the paperwork and therefore the subjects must again pick a snack, which will now be eaten immediately. Now preferences shift toward preference for the unhealthy snacks. Similar reversals have been documented in other studies (e.g., Read, Loewenstein, and Kalmanaram 1999; Oster and Scott-Morton 2005). The animal-choice literature anticipates these types of results (e.g., Raichlin and Green 1972; see also Rosati et al. 2007).

3. **Economic agents appear to be counterfactually optimistic about their future likelihood of engaging in patient behavior.** DellaVigna and Malmendier (2004, 2006) use data on the menu of gym fees (e.g., annual, monthly and per-visit), the frequency of membership terminations, and the frequency of gym visits (measured with swipe-cards) to infer that gym members have an excessively optimistic view of their own likelihood of future exercise. Survey responses in the same study reinforce this conclusion.

4. **Economic agents are willing to pay for commitment.** Ashraf, Karlan, and Yin (2006) find that one-quarter of their (rural Philippine) subjects are willing to put some of their savings in an illiquid account with the same interest rate as an alternative liquid account. Beshars and others (2013) document similar behavior, even when the liquid account has a lower interest rate than the illiquid account. Moreover, Beshars and others find that savings accounts attract more deposits the higher the penalty for early withdrawal, holding all else equal. Numerous studies have documented a demand for commitment: for example, Wertebroch (1998); Ariely and Wertebroch (2002); Giné, Karlan, and Zinman (2010); Kauer, Kremer, and Mullainathan (2010); Houser and others (2010); and Royer, Stehr, and Syndor (2012).

5. **Impaired discount rates are negatively correlated with scores on IQ tests.** In both children (Benjamin, Brown, and Shapiro 2013) and adults (Buckse et al. 2009), high scores on tests of intelligence or cognitive function correlate with low rates of measured time discounting (see Shamosh and Gray (2008) for a review).

6. **Subjects are less patient when placed under cognitive load.** When subjects are asked to remember a relatively long string of digits, their intertemporal choices become more impatient (Shiv and Fedorikhin 1999; Hinson, Jameson, and Whitney 2003; Benjamin, Brown, and Shapiro 2013). This effect has been produced with both food rewards and monetary rewards.

7. **Subjects are less patient when they are primed with affective cues; likewise, subjects are more patient when they are primed with abstract cues.** For example, Rodriguez, Mischel, and Shoda (1989) find that children are less willing to wait for food rewards when the food is visible. Likewise, children are more willing to wait for food rewards when asked to think about the rewards abstractly (e.g., think of pretzels as logs and marshmallows as clouds). Loewenstein (1996) and Berns, Laibon, and Loewenstein (2007) review many different visceral/affective manipulations. In a neuroimaging experiment, Albrecht and others (2010) report
that subjects choose more patiently and show less affective engagement when (1) they are making choices for themselves that only involve options in the future, or (2) they are making choices for someone else.

8. Subjects show diminished willpower after performing earlier, dissimilar tasks that require willpower. For example, Muraven, Tice, and Baumeister (1998) show that subjects are less able to sustain pressure on a hand grip after suppressing the expression of emotion while watching an upsetting video.

9. The willingness to delay gratification is compromised during adolescence as a consequence of the interplay between mature affective/emotional systems and immature top-down control systems (e.g., PFC). Neuroimaging evidence shows that among adolescents, mature neural systems below the cerebral cortex (e.g., the amygdala) become disproportionately activated during decision tasks relative to later-maturing top-down control systems, thereby biasing the adolescent’s action toward immediate over long-term rewards (Galvin et al. 2006; Casey, Jones, and Hare 2008; Casey, Galvan, and Hare 2005). Dense neural networks are formed in the PFC during adolescence and pruned at least through the early 20s. It is not known whether the association between PFC development and the willingness to delay gratification is causal or correlational, though transcranial magnetic stimulation (TMS) studies provide support for the causal interpretation (Figner et al. 2010). Green, Fry, and Myerson (1994) show that patience is correlated with age.

10. The tendency to delay gratification varies across species with adult humans showing the most patience. Tobin and Lodge (1994) study an intertemporal choice paradigm that can be used with human and nonhuman populations. They show that patience increases as the subject population switches from pigeons, to rats, to human children, to humans/animals. However, this position is challenged by research that has argued that high rates of impatience in nonhuman species are observed in food-deprived animals, invalidating comparisons to relatively sated human subjects (e.g., Rosati et al. 2007; see McClure et al. 2007 for evidence of high rates of impatience among nonhuman species).

11. The dIPFC (dorsolateral prefrontal cortex) has a low sensitivity to reward delay and the meso-limbic dopamine reward system has a high sensitivity to reward delay. McClure and others (2001, 2007) find that moving a reward further away in time causes the BOLD signal in the amygdala to decline relatively little. By contrast, the dopamine reward system displays a much more rapid decline in activation as rewards are delayed. Similar results have been reported by Albrecht and others (2010).

12. The dIPFC is more active when a delayed reward is chosen over an immediate reward. McClure and others (2004, 2007) find that the BOLD signal in left dIPFC (dorsolateral prefrontal cortex) is stronger when a delayed reward is chosen relatively to trials in which an immediate reward is chosen. Hare, Camerer, and Rangel (2009) find that left dIPFC is active when subjects reject a good tasting, unhealthy snack in favor of a neutral alternative reward.

13. The dopamine reward system has a decline in activation that follows a hyperbolic function in its own activation function to match the valuation function implied by choice. Kable and Glimcher (2007) estimate discount functions using choice data and find that the BOLD signal in the mPFC (medial prefrontal cortex) matches the same pattern of decay. McClure and others (2007) find a similar pattern of declining activation in the dopamine reward system.

14. Exogenously disrupting normal functioning of the lateral prefrontal cortex (IFPC), causes choices between now-versus-later rewards to shift toward the now option but does not affect choices between rewards that are both delayed. Figner and others (2010) show that disruption of left, but not right, IFPC with low-frequency repetitive transcranial magnetic stimulation (rTMS) increased choices of immediate rewards over larger, delayed rewards; rTMS did not change choices involving only delayed rewards or valuation judgments (in contrast to choices) of immediate and delayed rewards. This paper provides causal evidence for a neural lateral-prefrontal cortex-based self-control mechanism in intertemporal choice.

4.2 Multiple- Self Models with Selves That Have Overlapping Periods of Control

Three classes of models have been used to organize and explain these findings. We first discuss multiple-self models that have overlapping periods of control. We then discuss multiple-self models with nonoverlapping periods of control. Finally, we discuss unitary-self models with dynamically consistent preferences. We emphasize that all these models have been set up so they make similar qualitative predictions. Hence, they are difficult to distinguish empirically.

Some multiple-self models posit the coexistence of multiple neural systems with occasionally conflicting goals/preferences. These systems struggle to control or influence the choices of the decision maker. Models in this class first gained widespread acceptance after Freud (1923) argued that human choice is explained by an ongoing conflict among a conscientious superego, a self-interested ego, and a passion-driven id. Related ideas were also advocated by Smith (1759, 1776), who drew a distinction between people’s “interests” and their “passions.” Smith frequently discussed internal struggles between these conflicting sets of preferences (see Ashraf, Karlan, and Yin (2006) for a discussion of Smith’s “behavioral perspective.” Loevenstein and O’Donoghue (2006) have also developed related models.

In the psychology literature, dualities are drawn between controlled and automatic cognition (Schneider and Shiffrin, 1977), cold and hot processing (Metcalfe and Mischel, 1999), System 2 and System 1 (Kahneman and Frederick 2002; Kahneman 2011), deliberative and nondeliberative decision making (Frederick, 2005), conscious and unconscious processing (Damasio 1994; Bem 1967), and effortless and effortless systems (e.g., Muraven, Tice, and Baumeister 1998).

Neuroimaging research has located executive function in the prefrontal cortex (McClure et al. 2004, 2007; Hare, Camerer, and Rangel 2009; Figner et al. 2010; Albrecht et al. 2010). These authors argue that the dorsolateral prefrontal cortex is a critical brain region that is involved in self-regulation, self-control, and executive function. These findings explain why individuals with a comprised dorsolateral prefrontal cortex (e.g., due to cognitive load, lack of cognitive development, willpower exhaustion, injury, or intermittent transcranial magnetic stimulation) are more likely to make relatively impatience choices.

However, just because executive function is localized in the dIPFC, does not necessarily provide support for a two-system model (or some other multiple-self model). Kable and Glimcher (2007) interpret the data as supporting a unitary-self model. Hare, Camerer, and Rangel (2009) develop a framework in which executive function is implemented in the dIPFC, but the dIPFC is only one of many sources that contribute to valuation.
Some economists have proposed two-system models, including models that contrast "planner" and "doer" systems (Thaler and Shefrin 1981), patient and myopic systems (Fudenberg and Levine 2006, 2012; Fudenberg, Levine, and Maniadis 2012), abstract and visceral systems (Loewenstein and O'Donoghue 2005; Bernheim and Rangel 2004), and viscerally informed and analytic systems (Broca and Carrillo 2008a, 2008b, 2012, 2013).

4.3 Multiple-Self Models with Selves That Have Nonoverlapping Periods of Control

Researchers have also advocated models with dynamically inconsistent preferences generated by a unitary self at each point in time. Strotz (1955) was the first to propose such a framework, though his ideas were anticipated by Ramsey (1928) and Samuelson (1937). Strotz's ideas were applied by Laibson (1997) and O'Donoghue and Rabin (1999), who studied intrapersonal discounting with a model of intergenerational preferences proposed by Phelps and Pollak (1968). This model is referred to as quasi-hyperbolic discounting, present bias, or hyperbolic preferences. In this model, the agent has a well-defined (unitary) set of preferences at each point in time. But the agents' preferences at date t conflict with the agent's preferences at all future dates. If the agent anticipates these conflicts, he or she will attempt to constrain or commit her own future behavior.

More formally, the model posits that the discount function at date t is given by 1 (t = 0) and discount function values at times t > 1 are βt where β and δ are weakly bounded between 0 and 1. To understand the mechanics of this model, consider the illustrative case δ = 1. Now the model implies that current rewards have full weight, and any future reward has weight β. It is easy to see how this framework generates dynamically inconsistent preferences (and therefore a potential taste for commitment). From the perspective of date 0, dates 1 and 2 both have weight β, so a unit reward at date 1 is worth just as much as a unit reward at date 2. But from the perspective of date 1, a unit reward at date 1 is worth 1/β times the value of a unit reward at date 2. Hence, the unitary self at date 0 and the unitary self at date 1 don't agree on the relative value of rewards at dates 1 and 2.

Proponents of present-bias argue that parsimony and predictive accuracy support this modeling framework. These models make sharp predictions that match available data (Angeletos et al. 2001; Laibson, Repetto, and Tobacman 2007) and they provide an empirically validated theory of misforecasting (DellaVigna and Malmendier 2004, 2006) and commitment (see earlier discussion). On the other hand, present-bias models violate classical welfare assumptions and introduce the possibility of multiple equilibria. However, continuous-time implementations eliminate these drawbacks (Harris and Laibson 2013).

McClure and others (2004) point out that the β-δ model can also be interpreted as a model with multiple simultaneous selves. Specifically, posit the existence of two selves. One self is an exponential discounter with discount factor δ. A second self is a completely impatient agent. Suppose that the two selves combine their preferences with weights β and 1 − β. Then the aggregate (weighted) preference is 1 for immediate rewards and βδ for future rewards.

4.4 Unitary-Self Models

In the last decade, researchers have realized that phenomena such as commitment are not necessarily inconsistent with unitary-self models, which feature dynamically consistent preferences. These models assume that agents have preferences over choice sets. Specifically, agents may prefer not to have an option in their choice set, even if they do not pick that alternative. For example, an agent on a diet may find exposure to a tempting food aversive even if that tempting food is, in fact, not consumed. Dekel, Lipman, and Rustichini (2009) and Gil and Pesendorfer (2001) have proposed models in this class. Laibson (2001) and Bernheim and Rangel (2004) propose related models in which menu-based temptation effects are endogenously dependent on past associations between cues/menus and rewards. Such endogenous temptation models are based on the classical conditioning paradigm first proposed by Pavlov (e.g., Pavlov and Anrep 1927) and application of those principles to associations with environmental cues (e.g., heroin addicts craving when they see former co-users; see Siegel 1984).

4.5 Theoretical Summary

It is not clear how the theoretical literature will develop going forward. The available neural evidence can be interpreted as support for multiple-self models with overlapping periods of control, multiple-self models with nonoverlapping periods of control, or unitary-self models. The existing neural data does not sharply distinguish between these accounts.

There is, therefore, an ongoing debate over the neural foundations of intertemporal choice. However, some regularities have emerged. The key finding is that executive function (e.g., choosing the item with less immediate reward) is associated with activity in the dorsolateral prefrontal cortex (McClure et al. 2004, 2007; Hare, Camerer, and Rangel 2009; Figner et al. 2010; Albrecht et al. 2010).

5 THE NEURAL CIRCUITRY OF SOCIAL PREFERENCES

In this section, we review evidence about the neural processes that govern deviations from purely self-interested behavior (i.e., the neural circuitry of social preferences). The evidence is based on neuroeconomic studies that combine noninvasive neuroscience tools—such as fMRI, TMS, and tDCS—with behavioral games used in experimental economics. The neuroeconomic approach aims to provide a microfoundation of social preferences in terms of the underlying neural networks, which will eventually be achieved with the development of formal models of the underlying brain circuitry showing how the assumptions and parameters of behavioral models of social preferences relate to the empirically verified assumptions and parameters of the brain model. This will lead to a better understanding of the nature of social preferences and the sources of individual differences in other-regarding behaviors, including pathologies.

Theories of social preferences are based on the concept of decision utility (Kahneman, 1994). Decision utility is defined as the utility function that predicts observed decisions—hence decision utility is equivalent to the economic concept of revealed preference. Decision utility can, in principle, be distinguished from (1) experienced utility, which is the hedonic experience associated with the consumption of a good or an event, (2) anticipated utility, which is the anticipation of experienced utility at the time of decision-making, and (c) remembered utility, which is the experienced utility consumed when remembering past actions and events.

A central question, which recent studies address, is how the brain constructs decision utilities when a person's behavior reflects his or her own rewards but is also governed by competing social preferences such as warm glow altruism, reciprocity, or inequity
aversion. This general question implies a host of other important questions: Is self-interest a primary motive that appropriate inhibitory machinery needs to constrain? If so, which brain circuitry is involved in these inhibitory processes? To what extent are these processes related to emotion regulation? Do the positive hedonic consequences associated with nonselfish behaviors partially govern deviations from economic self-interest and, if so, are these complex social rewards represented in the striatum and the OFC (orbitofrontal cortex) like primary or monetary rewards (Knutson and Cooper 2005, O’Doherty 2004), or do they rely on different neural circuitry?

5.1 Social Preferences and Reward Circuitry

Theories of reciprocity and inequity aversion imply that subjects prefer the mutual cooperation outcome over the unilateral defection outcome in the canonical prisoners’ dilemma game, even though unilateral defection leads to a higher economic payoff. Although these theories do not make assumptions about the hedonic processes associated with fairness-related behaviors (because they rely on decision utilities), a plausible interpretation of these theories is that subjects, in fact, derive higher hedonic value from the mutual cooperation outcome (Thibaut and Kelley 1959). Therefore, a natural question is whether we can find neural traces of the special reward value stemming from the mutual cooperation outcome. Two neuroimaging studies (Rilling et al. 2004; Rilling et al. 2002) report activation in the ventral striatum when subjects experience mutual cooperation with a human partner compared to mutual cooperation with a computer partner. Given substantial evidence that primary and secondary reward anticipation activates the striatum, these studies suggest that mutual cooperation with a human partner is especially rewarding (holding financial consequences fixed through the computer partner control).

Social preference theories also predict that subjects prefer punishing unfair behavior such as defection in public good and prisoner’s dilemma games because leaving an unfair act unpunished is associated with higher disutility than bearing the cost of punishing an unfair act. In this view, it is natural to hypothesize that the act of punishing defection involves higher activation of reward circuitry. A PET (positron emission tomography) study (de Quervain et al. 2004) examined this hypothesis in the context of a social dilemma game with a punishment opportunity. This study showed that the dorsal striatum (caudate nucleus) is strongly activated in the contrast between a real punishment condition (in which the assignment of punishment points hurts the defector in economic terms) and a symbolic punishment condition (where the assignment of punishment points did not reduce the defector’s economic payoff). In another study Singer and others (2006) documented that men (but not women) who passively observe that a defector in a prisoner’s dilemma is punished by a third party show greater reward-related activation in the ventral striatum (Tabibnia, Sutput, Lieberman 2008), and from distribution tasks (Tricomi et al. 2010). Ventral tegmental (VTA) and striatal areas are both activated by receiving money and by making noncostly donations, indicating that “giving has its own reward” (Moll et al. 2006). Across subjects, those who made more costly donations also had more activity in the striatal reward circuitry. In one study (Harbaugh, Mayr, and Burghart 2007) subjects in a forced-donation condition passively observed money being transferred to themselves or to a charity. In a voluntary condition, subjects could decide whether to accept these monetary transfers. Subjects reported higher satisfaction in both the forced and the voluntary condition if the charity received a transfer (controlling for the subject’s cost of this transfer). Moreover, activations in dorsal and ventral striatum in both conditions are positively correlated with the money that goes to the charity. Thus, all else equal, subjects seem to experience charitable donations as rewarding because the very same reward areas that are activated when the subjects themselves receive a monetary transfer are also activated when the subjects make a costly transfer to a charity.

Neural evidence for inequality aversion was reported by Tricomi and others (2010). In pairs of subjects, one “rich” subject randomly received a $50 endowment at the beginning of a trial (the other “poor” subject did not but knew the other subject had received the bonus). Both subjects then rated the outcome of additional transfers to “self” and “other” during fMRI. The rich subjects showed a significantly higher activation in reward-related areas (e.g., ventral striatum) for transfers to other compared to self, while the poor subjects showed higher neural reward activation for transfers to self compared to other. The authors’ interpretation is that the rich subject is rewarded by a reduction in the gap between his or her earnings and the poor subject’s earnings, and the poor subject finds an increase in the wealth gap negatively rewarding. Finally, a recent ultimatum game study (Tabibnia, Satpute, and Lieberman 2008) provides evidence suggesting that the fairness of a bargaining offer—controlling for the absolute size of the monetary gain—is associated with activation in the ventral striatum. The same dollar-bargaining offer of, say, $5, elicits higher striatal activation if it represents a fair share (say, 50%) of the amount that is being bargained over, compared to when that dollar is offered as a small share (only 1%, for example).

The activations observed in these studies and several others indicate that social rewards commonly activate the dorsal or ventral striatum. There is substantial overlap between these areas of activation and activation observed in studies of reinforcement learning or anticipated money reward (Fehr 2009; Fehr and Camerer 2007). This overlap is consistent with the hypothesis that social preferences are similar to preferences for one’s own rewards in terms of neural activation, which is supportive of theories in which decisions reflect a weighted balance between self-interest and the interests of others.

The studies described here use the simplest multiperson paradigms that allocate money between people or entities. These are important building blocks. Some recent studies consider how the neural circuitry of prosocial behaviors and emotions is affected by various factors.

One topic is “social image”: How does knowing another person will observe you affect brain activity and choice? Economists have become interested in this topic (e.g., Andreoni and Bernheim 2009) and it is important, since social image could be affected by many details of how information and institutions are organized. An fMRI study showed that activity in bilateral striatum was stronger when subjects were being observed making charitable donations, compared to no observation (Izuma Saito, and Sadato 2008), which is consistent with the hypothesis that reputation derived from charitable donations is rewarding.

Consistent with a broad concept of inequity-aversion, one study focused on whether knowing that a high-status person suffers a setback produces a positive reward from “schadenfreude.” Activity in response to hypothetical scenarios was found in the striatum (and BOLD signal correlated with self-rated responses; Takahashi et al. 2009). This result resembles the finding of Singer et al. (2006) mentioned before.
Social preferences and emotions are also likely to play a role in noneconomic domains. One neural study exploring this topic presented vignettes based on actual murder cases with "mitigating circumstances," such as a husband murdering his wife to prevent her further suffering. Judges and juries are typically required to consider these circumstances during sentencing, even when the guilt of the murderer is established. Yamada et al. (2012) found that insula activity, a known correlate of simpler kinds of empathy, was associated with the strength of sentence reduction.

5.2 Do Activations in Reward Circuitry Predict Choices?

The preceding evidence is consistent with the view that costly prosocial acts are rewarding. However, the hedonic interpretation of social preference theories also implies that these acts occur because they are rewarding. If it could be shown that higher activations in the striatum imply a higher willingness to act altruistically, the case for the reward interpretation would be strengthened considerably.

Neuroimaging data do not allow causal inferences. However, it is possible to move toward causality by predicting choice behavior in one treatment ("out of treatment" forecasting) from neural activity in another treatment. For example, individual differences in caudate nucleus activation when punishment is costless for the punisher predicts how much individuals actually pay for punishment when it is costly de Quervain et al. (2004). Likewise, individual differences in striatal activity in the condition where donations are forced predicts subjects' willingness to donate money to charities in the condition in which donations are voluntary (Harbaugh, Mayr, and Burghart 2007). These results further support the reward interpretation of social preferences, which in turn provides support for the hypothesis of a common neural currency of social rewards and other primary and secondary rewards (Montague 2002).

5.3 The Role of the Prefrontal Cortex in Decisions Involving Social Preferences

If people have social preferences, the brain must compare social motives and economic self-interest and resolve conflict between them. Several studies indicate that the prefrontal cortex (PFC), a brain region that evolved recently (in evolutionary time) plays a decisive role in this conflict resolution. For example, the ventromedial PFC (VMPPC; Brodmann areas 10, 11) is more active (de Quervain et al. 2004) when a player can choose to punish an intentional defector at a cost to himself or herself, compared to when punishment is costless; this result is consistent with the hypothesis that this area is involved in the integration of separate benefits and costs in the pursuit of behavioral goals (Ramani and Owen 2004). In charitable donations (Moll et al. 2006), the contrast between altruistic decisions involving costs and no costs also showed activation of the VMPPC (ventromedial prefrontal cortex; in particular, Brodmann areas 10, 11, 32) and the dorsal anterior cingulate cortex (ACC). Since the ACC is thought to play a key role in conflict monitoring (Botvinick et al. 2001), activity in this region is consistent with the existence of a trade-off between self-interest and prosocial motives.

The role of the VMPPC in decisions involving costly altruism is also interesting because of related activation in this region in other studies. The VMPPC is involved in emotional processing and moral judgment (Koenigs et al. 2007, Moll et al. 2005), in integrating the value of consumer products and their prices (Knutson et al. 2007), in the encoding of the willingness to pay for consumer goods, lotteries (Chib et al. 2009; Rangel and Hare 2010), and charitable donations (Hare, Camerer, and Rangel 2010). Lesions to VMPPC are also associated with poor choices in various situations (Bechara et al. 1997, 1994), which require integrating costs and benefits, and in reduced prosociality (Krajbich et al. 2009). The Hare and others' (2010) study shows that activity in VMPPC is positively correlated with charitable donations consistent with the view that emerged from many other studies, that this area of the brain encodes decision utility (Chib et al. 2009; Rangel and Hare, 2010). In addition, the value signal in the VMPPC is modulated by other signals in the posterior superior temporal cortex (pSTC), which have been shown to be important for epistemic confidence, bias, indicating that VMPPC and pSTC activity are key components of the neural circuitry of social preferences. This does not mean that these areas are exclusively dedicated to the processing of social preferences. Rather, in the case of the VMPPC, for example, studies suggest a general role for this region in integrating emotional feelings about costs and benefits, regardless of whether these choices involve economic consumption goods or "noneconomic" goods such as the subjective value of acting altruistically.

The dorsolateral prefrontal cortex (DLPFC) probably also plays an important role in the processing of decisions involving social preferences (Sanfey et al. 2003). This study examined the neural circuitry involved in the recipient's behavior in an ultimatum game where the rejection of low positive offers involves a motivational conflict between fairness and economic self-interest. It reports activation of bilateral DLPFC and bilateral anterior insula (AI) in the contrast between "unfair-fair" offers. In addition, the higher the activation of right AI, the more likely a subject is to reject an unfair offer, suggesting that AI activation may be related to the degree of emotional resentment of unfair offers. The DLPFC activation may represent the cognitive control of the emotional impulse to reject unfair offers.

The interpretation that DLPFC activity represents the cognitive control of the impulse to reject implies that interfering or disrupting DLPFC activity reduces the control of the impulse and should, thus, increase the rejection rate. Knoch and others (2006) tested this hypothesis by reducing the activation in right and left DLPFC with low-frequency transcranial magnetic stimulation (TMS). Surprisingly, the study found that TMS of right DLPFC increases the acceptance rate of unfair offers relative to a placebo stimulation (from 9% to 44%), while TMS of left DLPFC did not affect behavior significantly (relative to a placebo condition). This finding suggests that right DLPFC is causally involved in controlling the impulse that pushes subjects toward accepting unfair offers, that is, in controlling or weighing economic self-interest. Interestingly, the disruption of right DLPFC affects only subjects' fairness-related behaviors but not their fairness judgments; that is, they still judge low offers to be very unfair, but they nevertheless accept them more frequently and more quickly. A similar dissociation between fairness judgments and fair responder behavior has been observed in Knoch and others (2008) where the authors down-regulate the activity of the right DLPFC with TDCS. Another TMS study (Knoch et al. 2009) shows that the right DLPFC is also causally involved in the formation of individual reputations as a trustworthy agent in a repeated trust game, since disruption leads to more untrustworthy behavior, which harms reputation. Apparently, when subjects face a trade-off between the short-run benefit of cheating their current partner and the long-run benefit of having a good reputation when facing future partners in the trust game, a functioning DLPFC seems to be necessary to enable subjects to decide in favor of their long-run benefit. This role of
the DLPC in overcoming short-run self-interest has also been corroborated in Spitzer and others (2007); this study shows that stronger compliance with a social norm in the face of a possible sanctioning threat is strongly correlated with the strength of DLPC activity.

In a recent study, Baumgartner and others (2011) applied TMS (transcranial magnetic stimulation) and fMRI to responders in the ultimatum game; they were either stimulated with TMS to the right or the left DLPC, and one control group was not stimulated at all. Subsequently, they played the ultimatum game during fMRI. This combination of methods enables the examination of the causal impact of TMS on behavior and the identification of the neural circuitry that is causally involved in the behavioral change. Interestingly, subjects who received TMS to the left DLPC or no TMS (i.e., the “normal” subjects) show a much higher rejection rate of unfair offers than subjects who received TMS to the right DLPC (i.e., the “deviant” subjects). In addition, the normal subjects display significantly higher activity in, and connectivity between, the right DLPC and the VMPFC when they receive unfairly low offers. These findings are consistent with the view that the activation of right DLPC and VMPFC, and the connectivity between them, is causally involved in regulating the decision utility of rejecting unfair offers.

However, brain stimulation is not the only way of establishing the causal relevance of fMRI-identified neural circuitry for subjects’ behavior. In recent years, several papers indicate the great potential of pharmacological experiments. Testosterone has been shown to enhance the fairness of bargaining offers in the ultimatum game (Eisenegger et al. 2010); the neurohormone oxytocin increases trusting behavior but not trustworthiness (Kosfeld et al. 2005); the depletion of the neurotransmitter serotonin increases the rejection rate in the ultimatum game (Crockett 2009; Crockett et al. 2008), and benzodiazepine reduces the rejection rate (Gospic et al. 2011). In several cases the pharmacological intervention was combined with fMRI so that the researchers were able to identify the neural circuitry causally involved in the behavioral change (Baumgartner et al. 2008; K. Gospic, et al. 2011). While space limits prevent us from going into the details, these studies further confirm the rapid progress that has been made in recent years in this field.

5.4 Summary
A key theme of the studies reviewed in this section is that social reward activates circuitry that overlaps with circuitry that anticipates and represents other types of rewards to a surprising degree. These studies reinforce the idea that social preferences for donating money, rejecting unfair offers, and punishing those who violate norms are genuine expressions of preference. The social rewards are traded off with subjects’ economic self-interest; the dorsolateral and the ventromedial prefrontal cortex are likely to be crucially involved in the balancing and weighing of competing rewards and the computation of decision utilities. Noninvasive brain stimulation can alter these neural processes and subjects’ behaviorally expressed social preferences. This establishes the causal relevance of the identified neural computations for subjects’ behavior. The overall goal of this endeavor is the identification of a sufficiently complete model of the neural circuitry of choice in the realm of social preferences. Such a model necessarily overlaps with a general neural model of choice that can be used to accurately predict behavior and can be linked to the theoretical objects of purely behavioral models (i.e., risk aversion, inequality aversion, etc.). However, because social preferences necessarily involve the evaluation of outcomes of relevant reference agents, the neural model may also include nodes and connections that are not necessary to explain choices in other domains.

6 STRATEGIC THINKING
Game theory started as applied mathematics describing “solutions” to games based on idealized play. Over several decades, game theory grew to include experimental studies, more psychologically realistic models (e.g., Camerer 2003), evolutionary modeling, and design applications. Neuroscience could contribute to game theory by identifying strategic algorithms that are being implemented in the brain. In addition, game theory could be of special use in neuroeconomics by parsing how general reward and learning structures combine with specialized social inference mechanisms (such as “theory of mind”) to determine strategic choice.

This section is organized around the bold hypothesis that the neural basis of strategic thinking is likely to have separable components corresponding to the mathematical restrictions imposed in different kinds of game theory. This simplification will surely turn out to be wrong on many details. However, it is certainly likely that different components of strategic thinking and execution require different cognitive capacities that are primarily located in different brain regions (and are differentially developed across species). If these different kinds of cognitive capacities have special value in certain types of games, then there will be some association between brain regions and strategic choices.

For example, a recent study (Martin et al. 2013) showed that chimpanzees make choices in two-strategy matching-pennies games that are both closer to (mixed) Nash equilibrium than comparable human choices and about as statistically independent of past observations as human choices are. The chimpanzees overall choices are closer to predictions of game theory than the humans are! However, in these games, the main cognitive skill is detecting patterns in choices by others and disguising one’s own patterns from others. Experienced young chimps are often better at short-term detection and spatial pattern memory than people. This example illustrates how a highly specialized cognitive skill could account for differences in behavior (between species) in a narrow class of games.

We discuss four aspects of strategic thinking and what is known about neural activity during these types of thinking:

1. Strategic awareness that outcomes are affected by actions of other players;
2. Beliefs and iterated beliefs about what other players will do and think;
3. Learning about the value of strategies, perhaps by reinforcement or counterfactual “fictive” (model-based) learning;
4. Strategic teaching, the valuation and adjustment of behavior by anticipating the effects of one’s current action on another player’s beliefs and future behavior.

The additional topic of social preference (how outcomes other players receive are valued) is discussed in a previous section of this chapter.

6.1 Strategic Awareness
The most basic idea in game theory is that people are strategically aware that their outcomes depend on choices by other players. While this seems obviously true for
educated adults, strategic awareness may well be absent for young human children, other species, in causally complex environments, and in disorders associated with deficits in social reasoning (such as autism).

Neural evidence. Several studies have shown differential neural activation when playing a game against a human opponent, compared to a computer (e.g., Gallagher et al. 2002; McCabe et al. 2001; Coricelli and Nagel 2009). These papers are methodologically challenging, because it is crucial to control for comparability of the behavior of humans and computers (and particularly its expected reward value) in the presence of feedback—as a result, opacity about what the computers are doing is sometimes used. The general conclusion is that “mentalizing” or “theory of mind” (ToM) circuitry, which is specialized to imaging what other people feel, believe, or intend to do, is more active when playing a person rather than a computer. The result is a bit surprising since the computer’s actions were typically chosen by a human too, so it is not obvious why neural activity would be different when playing a live person or a computerized facsimile. However, several studies have shown such differences.

6.2 Beliefs, Iterated Beliefs, and Strategic Choice

If players have some strategic awareness, then what strategic choices do players make if they know they are playing other players? Based on subjective utility theory, a natural theory is that players form beliefs about what other players will do and their strategic choices reveal those beliefs.

The most elegant and prominent assumption in game theory is that beliefs are in (Nash) equilibrium, which is equivalent to mutually rational players having mutual knowledge of one another’s strategies. That is, in equilibrium players have somehow correctly figured out what others will do and optimize given those beliefs. However, equilibrium is unlikely to come from preplay analysis of a game and, instead, is likely to come from experience (as in learning models), evolutionary adaptation, or preplay communication.

It is highly unlikely that the brain would directly compute an equilibrium strategy. Instead, let’s turn attention to a family of theories that is more neurally plausible—cognitive hierarchy (CH), or level-k theories.

These theories assume that players form beliefs by iterating through steps of thinking (probabilistic recursion). The iteration starts at a level-0 player who chooses according to a simple heuristic (e.g., randomly, or using perceptual salience). Agents doing one or more steps of thinking compute what lower-level thinkers will do and best-respond or imperfectly “better-respond” using a stochastic response (e.g., logarithm). The behavioral evidence in support of these CH theories is that predictions about initial aggregate choices are typically better approximations of actual human play than equilibrium theories. Importantly, they appear to explain both deviations from equilibrium predictions in one-shot play, and also explain when equilibrium predictions are surprisingly accurate (even with no learning; see Camerer, Ho, and Chong 2004; Crawford, Costa-Gomes, and Iriberri 2013).

Direct cognitive evidence for steps of thinking comes from eye-tracking and mouse-based studies. These studies record what information subjects are looking at and for how long. Then the theory can be tested as a joint hypothesis about information search and choices resulting from that search. For example, level-2 players must look at other players’ payoffs to choose strategies, but lower-level players do not. So the theories predict an association between looking at the payoffs of other players and frequency of higher-level choices. The earliest studies, going back at least two decades, showed approximate conformity of thinking steps to associated predictions of information search by different types (e.g., Camerer et al. 1993; Johnson et al. 2002). More recent studies showed even clearer conformity of imperfect information lookup and choice (Costa-Gomes, Crawford, and Broseta 2001; Costa-Gomes and Crawford 2006; Wang, Spezio, and Camerer 2010; Brocas et al. 2009).

There is also modest to high intrapersonal reliability across games of an individual’s classified level type (although probably lower than levels of reliability for the most stable traits, such as IQ and extraversion). For example, Chong, Ho, and Camerer (2005) computed a correlation of +0.61 between a subject’s average estimated levels in two separate blocks of 11 games. There are also modest correlations between estimated thinking levels and working memory (Devetag and Warglien 2003).

Neural evidence. A small number of neuroimaging fMRI studies have explored the neural underpinnings of strategic belief formation and depth of thinking.

Bhatt and Camerer (2005) considered the processes of choice and first- and second-order belief formation in two-player, dominance-solvable matrix games with 2 to 4 strategies. In each trial, subjects either made a choice in the game, guessed what the other player would do (i.e., stated first-order beliefs), or guessed the other player’s first-order beliefs and that their own choice (i.e., stated second-order beliefs). In order to isolate the process of reasoning without “interference” from learning, there was no feedback.

A simple hypothesis consistent with CH modeling is that many subjects will use different reasoning processes in choosing and forming beliefs. For example, nonstrategic players may spend no time forming a belief; this could be manifested as substantially greater activity in value-oriented regions during choice trials than in the guessing-without-other-condition. Indeed, when a subject’s choices and beliefs were out of equilibrium, the choice task elicited significantly more activity in medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (DLPFC), which is involved in working memory and self-control. However, when subjects’ choices and beliefs were in equilibrium, activation patterns were not significantly different in choice and guessing trials except in a small area of the ventral striatum (probably associated with differential rewards in the two types of trials). No such striatal difference was present in out-of-equilibrium trials.

Bhatt and Camerer defined a measure of “strategic intelligence” (SIQ) based on each player’s expected payoffs and belief accuracy. High SIQ subjects had significantly greater activation in the caudate (a reward-related area) and prefrontal. Conversely, people with lower SIQ had significantly more activation in the left insular cortex, an area strongly associated with emotional discomfort, and response to financial risk and uncertainty (e.g., Mohr, Biele, and Heekeren 2010). Thus, poor strategic performance seems to reflect high internal strategic uncertainty, as “felt” by the insula.

Krug et al. (2009) and fMRI during play of asymmetric dominance-solvable games and matching games. Games varied in difficulty (corresponding to the number of steps of iterated reasoning necessary to reach Nash equilibrium). Activation in the prefrontal scaled with the difficulty of these games. They also studied simple matching games that had the same formats as the dominance solvable games but in which reward was maximized if you chose the same target as a partner. They found that the middle insula correlated with a measure of how “focal” the equilibrium was (and also with expected payoff), as if focality is associated with a bodily “gut feeling” projected to insula.

Coricelli and Nagel (2009) focused on the “p-beauty contest,” in which subjects choose numbers in the interval [0,100] and win if their number is the closest to a multiplier p times the average number. Their subjects played a series of games
with different values of the multiplier p (and no feedback) against both humans and computers (which chose randomly from all numbers).

They were able to classify people by behavior rather sharply into level-1 thinkers, who choose close to $p = 0$ in most games, and level-2 thinkers who choose $p > 50$. They found significantly more activation in dmPFC (paracingulate) and vmPFC and bilateral temporo-parietal junction (TPJ) (see Figure 3.6).

These are areas that are well established to be part of a candidate "theory of mind" circuit used to compute the intentions, beliefs, and desires of others (e.g., Amodio and Frith 2006).

Yoshida, Dolan, and Friston (2008) create a recursive-belief model similar to the cognitive hierarchy approaches and apply it to the stag hunt game. In their games, two low-value rabbits are present on a two-dimensional grid. A high-value stag is also present. Two players make sequential one-step moves either toward the stag (who captures the rabbits) or toward a rabbit (which does not). The game ends when either of the players reaches a rabbit target or when the two players end up adjacent to the stag, "capturing" it.

They formalize a Bayesian notion of steps of recursive anticipation. The model creates trial-by-trial computational regressors. Using fMRI, they find that variation in the distribution of opponent thinking steps (strategic uncertainty, measured by the distribution's entropy) activates dorsomedial prefrontal cortex (paracingulate) and posterior cingulate. The level of strategy the subject seems to use is correlated with dLPFC (dorsolateral prefrontal cortex) as well as frontal eye field and superior parietal lobule. They suggest that paracingulate is activated in mentalizing to determine opponent's strategic thinking type, and dLPFC is involved in implementing planning ahead and working memory during "deep strategic thinking" (planning ahead several moves, as in chess, especially given their visual display of the game on a grid).

6.3 Learning

Many empirical studies have examined how human (and monkey) agents learn to adjust their strategies in games (see Camerer 2003, Chapter 6). While there is a huge literature on the neuroscience of animal and human learning in simple decisions, there is only a small intersection combining estimation of empirical models of human learning and neural observation.

Two popular theories are reinforcement, and belief learning (e.g., fictitious play). In reinforcement learning, strategy values are adjusted by payoffs (or prediction error). In belief learning, beliefs about what others will do are adjusted by observation and then used to compute expected payoffs and guide choice. One popular form of belief learning is weighted fictitious play (WFP), in which beliefs are a weighted average of observed past choices by opponents. Camerer and Ho (1999) noted that learning according to WFP is exactly the same as a general type of reinforcement learning in which strategies that are not chosen are also reinforced according to a foregone payoff, which they call EWA but which has been renamed "fictive learning" in decision neuroscience.

This kind of fictive learning is sometimes called model based because it requires a model, or understanding of how all possible choices lead to possible payoffs, in order to compute fictive payoffs from strategies that were not chosen. Presenting such a payoff "model"—usually a payoff matrix—is common in human experiments but is never done for nonhuman animal subjects; in searching for general learning rules, it is therefore useful to distinguish between "model-free" learning (where fictive payoffs are unknown) and model-based learning.

From a neural point of view, the observation that WFP is a kind of reinforcement invites consideration of a general model in which strategy values combine both reinforced payoffs and foregone payoffs. In a useful class of models, the fictive weight is δ times the reinforcement weight of 1, perhaps because those value signals are computed differently in the brain and therefore weighted differently in guiding behavior. Empirical estimates from behavior in many games suggest that the fictive learning weight δ is between 0 and 1. These data suggest subjects do use model-based information about foregone payoffs but do not weigh that information as heavily as received rewards.

A plausible hypothesis about locations of neural activity is that reinforced value computations are encoded by prediction error in the midbrain and ventral striatum (as shown by many studies). These are phylogenetically older regions shared by humans and many other species, an anatomical observation that is consistent with the vast array of evidence that reinforcement-learning processes are common across species. Some studies indicate that regret signals are encoded in orbitofrontal cortex (OFC, Coricelli, Dolan, and Sirigu 2007); since fictive learning is typically based on imagined counterfactuals, like those which create regret, it is plausible that these signals would be encoded in OFC and connected areas.

Neural evidence: Available neuroscience studies reject the two parametric extremes in which there is either no fictive learning (i.e., $\delta = 0$) and fictive learning is as strong as learning from received rewards ($\delta = 1$). Lohrenz and others (2007) find fictive learning signals in ventral striatum that are similar to prediction error signals from actual rewards and Mobbs and others (2009) show activation in response to rewards earned by similar others, which suggests a more general model in which learning can be both fictive and based on learning from observing others (perhaps depending on "social distance").

Hayden, Pearson, and Platt (2009) also record fictive learning signals from dorsal ACC neurons in rhesus monkeys. They show that the monkeys do respond to fictive rewards (if a high-value target was in a location they didn't choose, they are more likely to choose it next time). The ratio of neural firing rates in response to fictive versus experienced reward is around 0.70, which suggests a crude estimate of the fictive learning, relative weighting δ parameter.
Fictive learning is a special kind of model-based learning in computational neuroscience. In model-based learning, agents use the knowledge of how the values of multiple choice objects are linked—through a model—to update assigned values of all objects after receiving a learning signal from one chosen object. Hampton, Bossaerts, and O’Doherty (2008) show clear learning signals corresponding to model-based learning.

Thevarajah and others (2009) looked for neural correlates of EWA learning in a matching-pennies game. In their experiment, two rhesus macaques made choices, through eye saccades, against a computerized opponent designed to exploit temporal patterns in the macaques’ play. Single-unit electrode recording measured neural firing in intermediate superior colliculus (SCI). SCI is a region that topographically maps saccade sites and also projects to premotor neurons and to dopaminergic sites in the midbrain (ventral tegmental area and substantia nigra), so it is a sensitive a priori candidate for encoding the value of a saccade (i.e., a strategy choice, given how the game is played). They find a strong correlation between SCI firing rates and EWA strategy values in one monkey and a modest correlation in the other monkey.

6.4 Strategic Teaching and Influence Value

The learning theories described in the last section are all adaptive; that is, they adjust either estimated strategy value or adjust beliefs in response to previous experience. A further step is “sophistication”—that is, players form beliefs using a model of how other players are learning. There is some evidence that models with sophistication (and learning to be more sophisticated) fit information lookup and choice data better than simple learning models (e.g., Stahl & Chong 2004).14

Sophistication should interact with the nature of repeated matching. When players expect to play together repeatedly, if one player is sophisticated, it can pay for him or her to take actions that deliberately manipulate the learning process of the other player. A common example of this sort of “strategic teaching” is bluffing in poker: Bluffing is betting aggressively to make opponents believe you have a winning hand so that they should quit betting and fold their cards. It is well known that an incentive to “strategically teach” can arise in repeated games and also in games where a long-run player is matched with a sequence of short-run players (Fudenberg and Levine 1998).

Hampton, Bossaerts, and O’Doherty (2008) did fMRI to study strategic teaching in a two-player “work-shirk” or monitoring game. The work-shirk game is a variant of asymmetric matching pennies in which workers can work or shirk and employers can monitor or not monitor. Workers prefer to match (e.g., working and monitoring) and employers prefer to mismatch (e.g., monitoring shirking workers). In early work, Platt and Glimcher (1997) recorded neural firing in lateral intraparietal cortex (LIP) and found it associated closely with expected payoffs in this game for monkeys playing computerized opponents. Simple reinforcement learning fits these neural signals well in monkeys (see also Seo, Barraclough, and Lee 2009).

The authors fit three models: reinforcement learning; fictitious play; and an “influence model,” where players account for the impact of current actions on their own value in the future through its influence on the opponent’s reinforcement learning. For example, an employee who chooses Work when the employer picked Monitor earns 0. However, if a learning employer is then likely to switch to Not Monitor in the future, the Work choice has an “influence value” because it raises the future value of Shirking (by escaping Monitoring).

Hampton and others found that for about half the subjects choices were better fit by including an influence value term (half were not). They analyzed two areas generally thought to be part of the mentalizing circuit, the superior temporal sulcus (STS) and dorsomedial prefrontal cortex (dmPFC). They found that these areas correlated with different aspects of the influence model; dmPFC activity correlated with predicted reward in the influence model at the time of choice and, since dmPFC is often active in theory of the mind, this indicates a prospective calculation of future value based on how opponents will learn and respond. In addition, the STS is correlated with the component of prediction error related to second-order beliefs. That is, this area’s activity correlated with the prediction error in the second-order belief. Since the second-order belief predicted the opponent should adapt his behavior based on your action (at the time that feedback is seen).

Direct strategic deception is shown by Bhatt and others (2010) in bargaining. Two players, a buyer and a seller, play 60 rounds of the game. At the beginning of each round, the “buyer” is informed of her private value V, which is an integer drawn with uniform probability between 1 and 10. She is then asked to “suggest a price” S to the seller, an integer between 1 and 10. The seller sees this suggestion and sets a price P. If P < V, the trade executes and the seller and buyer earn P and V − P. If P > V, the trade does not execute and they get nothing. Importantly, no feedback about whether the trade occurred is provided to either player after each round.

By regressing each buyer’s suggestions S against their values V, Bhatt and others could classify buyers into three types. One type showed no strong correlation. A second “incrementalist” type typically had a strong positive correlation (and high R²) due to deliberate revelation of values (in an effort to increase efficiency). A third “strategist” type used a counterintuitive strategy of sending high S suggestions when they have low values and low S suggestions when they have high values (so S and V are negatively correlated). (This behavior is predicted as level 2 in a modified CH model.) The idea is that naïve level-1 sellers will attempt to make inferences about how “honest” a buyer is by considering the history of suggestions they see in the game. If those sellers see only low values of S, they will infer that the buyer is low-balling and will ignore the suggestions. However, if they see a relatively uniform mixture of suggestions, they will think the buyer must be prosocially revealing something about their values to increase gains from trade. They will tend to trust the suggestions, choosing low prices when they see low suggestions and high prices when they see high suggestions. Level-2 strategist buyers will realize this and use low-value rounds, where they don’t stand to earn much anyway, to generate credibility so that they can reap all the rewards from very low prices during the high-value rounds.

Bhatt and others found that during the buyer’s price-suggestion period, there is stronger activity in the DLPCF for strategists compared to other subjects. This could be interpreted as evidence of active working memory (keeping track of the distribution of suggestions in order to make it look honest) or inhibition of a natural instinct to make suggestions that are positively correlated with value. There is also unusually large activity for strategists when they receive a high-value signal in STS close to the region observed in Hampton, Bossaerts, and O’Doherty (2008) (and hence must bluff the most by suggesting a low price).

For sellers who are judging how much information is conveyed by a buyer’s price suggestion, Bhatt and others (2012) found that activity in bilateral amygdala was correlated with a buyer’s “suspicion,” as measured by how closely the seller’s price offers matched the buyer’s suggestions. A low correlation indicates suspicion and is associated with amygdala activity, consistent with an established role of amygdala in rapid vigilance toward threat (e.g., fear response).
Together, these studies show that there is some match between computations inferred from choices (influence value and "strategizing") and regions thought to be involved in value calculation and mentalizing, and in emotional judgments associated with economic suspicion.

Montague and several colleagues have explored many aspects of a 10-period repeated trust game using fMRI. King-Casas and others (2005) found signals in the caudate nucleus of the trustee brain in response to positive ("benevolent") reciprocity by the investor. This suggests the brain is computing a rather complex kind of social reward based on an anticipation of future responses. In addition, there is evidence that activity in the caudate region occurs earlier and earlier across later rounds of the experiment, by about 14 s, signaling a behavioral "intention to trust" well ahead of the actual behavior.

More recently, Montague’s group has used trust games as a tool for doing “computational psychiatry”—that is, exploring how disorders are associated with disruption of conventional neural computations that are typically adaptive.

King-Casas and others (2008) consider behavior and neural activity during the trust game in subjects with borderline personality disorder. Borderline personality disorder (BPD) is characterized by emotional disregulation, including some level of paranoia, often leading to unstable personal relationships. In the King-Casas experiment, subjects with BPD were paired as trustees with healthy investors matched on education, IQ, and socioeconomic status, and played 10 rounds of the trust game.

The major behavioral finding is that pairs that included a BPD subject earned significantly less money in total than those involving two healthy subjects. This appears to be due to markedly lower levels of investment in the later rounds of the game by investors when playing with a BPD trustee. In healthy pairs, breakdowns of cooperation were often followed by “coaxing” behavior by the trustees: trustees would repay all or most of the money they receive during the trial. This signaled trustworthiness to the investor and often restored a cooperative interaction. Investments appeared to decrease in these pairs because BPD subjects failed to effectively signal their trustworthiness to the investors via this coaxing behavior.

The study found that people with BPD had significantly decreased activation in the anterior insula (alns) in response to low investments as compared to controls. Activity in alns has often been linked to subjects experiencing emotional discomfort, perhaps accompanying a violation of social norms (e.g., low offers in the ultimatum game; Sanfey et al. 2003). A lack of activity here when BPD subjects see low investment suggests a failure to interpret those low investments as a lack of trust in response to trustee norm violations. The authors hypothesize that this failure to detect a violation of social norms impairs the ability of the BPDs to respond appropriately with coaxing. In turn this failure to coax leads to decreased cooperation throughout the experiment and fewer returns to both parties.

Chiu and others (2008) find that autistic subjects had much weaker signals in regions of cingulate specialized to "self" signals about payoffs and actions of oneself.

6.5 Discussion of Strategic Neuroscience

As noted in the introduction, the goal of neuroeconomics is not to find a special brain area for each task. Quite the opposite: the hope is that common patterns of circuitry will emerge that will inform debates about the computations that are performed and suggest new theories of behavior and new predictions. Strategic neuroscience is just beginning, but there is some tentative convergence about activity in four regions across studies: mPFC, dLIFC, the precuneus, and the insula. The locations of activity described in this section are identified in three brain "slices" and shown in Figure 3.7.

Figure 3.7: Regions of activity in various game theoretic and mentalizing tasks. (a) Sagittal slice from back (posterior) to front (anterior) of the brain, x = 5, showing activity in precuneus/posterior cingulate (posterior) and dorsomedial prefrontal cortex (DMPC; anterior). (b) Sagittal slice, x = 35, showing activity in right insula. (Left insula regions are inverted to opposite right regions for purposes of plotting.) (c) Coronal slice from left to right, y = 24. Shows activity in dorsolateral prefrontal cortex (dlPFC).
Activation in dorsal mPFC was found when choices were out of equilibrium (Bhatt and Camerer 2005) among higher-level thinkers (Coricelli and Nagel 2009), when the other player’s sophistication is uncertain (Yoshida, Dolan, and Friston 2008), and when computing influence value (Hampton, Brossaerts, and O’Doherty 2008). This region is active in many social cognition tasks, including self-knowledge and perspective taking (Amadio and Frith 2006; D’Argembeau et al. 2007) and in some nonsocial tasks that require cognitive control (Riddinkhof et al. 2004; Li et al. 2006). Amadio and Frith (2006) hypothesize that the region is involved with modulating behavior based on anticipated value, with the most posterior areas dealing with simple action values and representations getting increasingly abstract and complex moving forward toward the frontal pole.

There is very tentative evidence consistent with this hypothesized posterior-anterior value complexity gradient, as measured by the y-coordinate in zyc-space. The simplest behavior is probably in Bhatt and Camerer (y = 36), two-step thinking is a little more complex (Coricelli and Nagel 2009, y = 48), and influence value is rather complex (Hampton, Bressaerts, and O’Doherty 2008, y = 63).

The dorsolateral PFC is thought to be involved in working memory (which is necessary for doing “I think he thinks…” types of calculations) and also in inhibition of rapid prepotent responses (such as implementing patient plans (e.g., McClure et al. 2004, 2007) and resisting tempting foods (Hare, Camerer, and Rangel 2009)). In the studies in this section, activity in the dPFC is seen in Bhatt and Camerer (strategic choice out of equilibrium), Coricelli and Nagel (correlated with higher-level thinking), Yoshida and others (higher-level thinking), and Bhatt and others (strategizing price suggestions in bargaining). These results suggest that dPFC may be necessary for a combination of working memory and executive control required to play strategically at high levels. Importantly, Knoll and others (2009) found that application of disruptive TMS to right dPFC reduced the tendency of players to build up reputations in partner-matching repeated-trust games (with no such change in anonymous stranger-matching games).

Precuneus. Precuneus activity is seen in Bhatt and Camerer (2005), Kuo and others (2009), and Bhatt and others (2010). The precuneus has reciprocal connections with many of the other areas mentioned throughout this chapter, including the mPFC, the cingulate (including both the ACC and retrosplenial cortices), and the dorsolateral prefrontal cortex.

The precuneus has been implicated in a host of tasks, including episodic memory retrieval (Shallice et al. 1994, Fletcher et al. 1995, Lundstrom et al. 2003, Addis et al. 2004), attention guidance and switching both between objects and among object features (Culham et al. 1998; Le, Pardo, and Hu 1998; Nagahama et al. 1999; Simon et al. 2002), a variety of imagery tasks (Cavanna and Trimble 2006), and perspective taking (Vogeley et al. 2004; Vogeley et al. 2001; Ruby and Decety 2001). Precuneus is also one of the “default network” areas that are unusually active when subjects are conscious and resting (Raichle et al. 2001).

Our hunch is that it is unlikely that the precuneus plays a special role in strategic thinking. Instead, the activity observed in a few studies is likely to be due to the fact that attentional control and perspective taking are important for complex strategic valuation. A fruitful way to learn more would be to vary a single dimension of games, such as symmetry versus asymmetry, which are designed to require more perspective taking and attentional control, and see if precuneus is actually more active.

Insula. Insula activity appears in Bhatt and Camerer (correlated with low strategic payoff and accuracy) and Kuo and others (2009; correlated with focality in matching games). The insula is thought to be responsible for “interoception,” that is, the perception of one’s own internal state. It has been proposed that the information received in the posterior insula is processed and re-represented in the anterior insula as subjective emotion and is also important for a feeling of self (Craig 2002; Critchley 2005; Keysers and Gazzola 2007). It may be that middle-insula activity reflects more basic visceral sensations in these games—like intuitive impulses corresponding to generalized strategic uncertainty rather than to more analytical processing. (Note the well-established role of insula in encoding financial uncertainty, discussed in the section Risky Choice in this chapter.)

6.6 Summary

Game theory has emerged as a standard language in economics and is the focus of thousands of behavioral experiments. So far, a small number of fMRI studies and several studies using variants of eye-tracking are reasonably supportive of cognitive hierarchy-type models as models of both mental computation and initial choices. Game theory has also influenced social neuroscience by providing paradigms and predictions (e.g., Rilling and Sanfey, 2011).

Given that there is a huge space of possible theories covering strategic thinking, learning, and teaching (or influence), it may be difficult to rapidly figure out which theories predict best and under what circumstances, using only choices. Theorists and experimenters struggle to find games and treatments that can separate (or identify) distinctive predictions of theories. If theories of strategic choice are described in terms of what cognitions and emotions are neurally computed to implement those choices, then competing theories could—in principle—be more efficiently distinguished using a combination of choice and neural data than using choice data alone. Substantial progress using the combination of choice and information search data has already been made in
several studies. In addition, since many of the candidate brain regions identified so far in fMRI are close to the cortical surface (such as TPJ, dmPFC), other tools such as EEG and TMS, which record or disrupt electrical activity close to the cortical surface, could prove particularly useful in checking robustness of results from fMRI and lesion studies. Finally, it is useful to ask again—why care about where? That is, suppose we believed (with more confidence than we have now) that the common areas shown in Figure 3.7a–c are computing aspects of strategic value or action. What can be done with that information? The answer is that we can couple knowledge of how these regions work in different species, develop across the human life cycle (both childhood tissue growth and decline in aging), are connected to other regions, and are affected by gene expression, neurotransmitters, and drugs. Combining functional and anatomical knowledge will lead to predictions about the types of animals and people who may behave more or less strategically. Predictions can also be made about how activity will be modulated by changes in representations or simply environmental effects, which either overload or activate these regions.

7 CONCLUSION

This chapter reviews the nascent, rapidly growing literature in neuroeconomics, paying particular attention to experimental methods. There are five principal motivations for pursuing neuroeconomics research. First, some researchers—even some economists—are willing to study neuroeconomics for its own sake. Second, neuroeconomic research provides a new way of imperfectly measuring human well-being. Third, neuroeconomic concepts serve as catalyst for model development. Fourth, neuroeconomic methods provide a new, powerful way to test economic models that unambiguously specify how choices depend on observables and what computational mechanism leads to those choices. Fifth, neuroeconomics will improve our ability to predict behavior and design interventions that (1) influence the behavior of others and (2) manage our own appetites and drives.

This chapter focused on two methodology topics—basic neurobiology and neuroimaging—and four applications—risk preferences, intertemporal choice, social preferences, and strategic behavior. Many other important topics needed to be omitted for lack of space. Active work in neuroeconomics is taking place in every choice domain. Even blindfolded, a pedestrian could walk across a college campus. But that person would travel more efficiently with full use of his or her senses. Likewise, economists should remove our own methodological blindfold. At the moment, the cost of wearing a neuroscientific blindfold is not great, since neuroscience is in its infancy. However, as neuroscience methods continue to rapidly advance it is likely that neuroscientific insights will significantly improve our economic vision.

ACKNOWLEDGMENTS

We gratefully acknowledge research assistance from Colin Gray and Gwen Reynolds and key guidance from John Kagel, Alvin Roth, and an anonymous referee. We also acknowledge financial support from the Moore Foundation (Camerer), the National Science Foundation (Camerer), and the National Institute of Aging (Cohen; Glimcher, R01AG033406; Laibson, P01AG005842), the Swiss National Science Foundation (Fehr, CRSII3_141965/1) and the European Research Council (Fehr, 295042).

NOTES

1. Neurotransmitters are molecules that carry neurochemical signals from one neuron to another.
2. Other neuroimaging methods include magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalograms (EEG).
4. Discrete choice models (e.g., Logit) have alternatively been interpreted as models with decision noise, like game-theoretic trembles, or models in which true utility has a stochastic component. In fact, these perspectives are both sensible and mutually compatible.
5. Becker and Murphy’s (1988) conjecture: “People get addicted not only to alcohol, cocaine, and cigarettes but also to work, eating, music, television, their standard of living, other people, religion, and many other activities.” Within their model, “addiction” is simply adjacent complementarity in consumption (marginal utility is increasing the level of past consumption). However, to a neuroeconomist, addiction to drugs is a biological process marked by changing synaptic function, changing reward prediction error, increasing withdrawal upon cessation, craving, and sensitivity to environmental cues “triggers” associated with past use (Laibson 2001). So the economic and neuroeconomic approaches can be distinguished empirically. Becker and Murphy’s claim about the breadth of their theory could then be tested on a neuroeconomic basis (along with choices and prices).
6. Note how obviously cardinal and linear is this discussion of firing rates as encoding schemes. To a neurobiologist, who is essentially an algorithmic engineer, this is the most natural way to imagine firing rates. Perhaps somewhat surprisingly, there is also a huge amount of data to support the conclusion that firing rates actually are often linear with important environmental variables. Perhaps even more surprisingly, the activity level of a given neuron during rest actually does correspond, in most cases, to the default state of the variable being encoded. One simple example of this is the representation of the speed of a moving object in the visual system. Within a fixed range of speeds for each neuron, firing rates in cortical area MT are highly linear encoders of this highly abstract property, with almost all variance accounted for by the Poisson structure of fixed neuronal noise (Mansfield and Van Essen 1983, Tolhurst et al. 1983).
7. SHTT appears to be associated with neuroticism and with depressive reactions to life events. However, it is important to note that associations of single gene polymorphisms with broad behavior generally do not replicate strongly from study to study. As a result, the trend in “genoeconomics” is toward GWAS sampling of large numbers (500,000+) of candidate genes, with aggressive correction for multiple comparison to avoid false positives. The Roiser et al. (2011) study chose to look at SHTT specifically because of the role of amygdala shown by fMRI in the earlier De Martino et al. (2006) study and because of other evidence of a link between SHTT and amygdala. In any case, it is reasonable to be skeptical of any single gene-behavior association until at least five to ten studies find similar results.
8. Note that Tom et al. first identified regions that were responsive to both increased gain and reduced loss (by looking at all brain areas, a “whole-brain analysis”) and then measured whether individual differences in the BOLD signal in one of those regions (chosen a priori) correlated with different individual z scores estimated from choices. This procedure avoids an important critique articulated by Vul et al. (2009)—that cross-individual correlations between fMRI activity and behavioral measures are likely to be implausibly high if they result from a whole-brain search (see also commentary on the Vul paper in the same journal, and Kriegeskorte et al. 2009).
9. These types of causal influences have been used pharmacology and techniques like TMS to affect vision and motor movements for a long time.
10. This section draws heavily on (and overlaps with) the work of Fehr and Camerer (2007) and Fehr (2009). Interested readers can find details in those papers.
11. Transcranial direct current stimulation.
13. Being “in equilibrium” is defined behaviorally as trials in which choices are best responses to beliefs, and both beliefs and second-order beliefs match choices and behavioral measures are likely to be implausibly high if they result from a whole-brain search (see also commentary on the Vul paper in the same journal, and Kriegeskorte et al. 2009).
14. Notice that while these theories can be difficult to distinguish using only observed choices, it is easy to distinguish them with cognitive data: adaptive players do not need to look at the payoffs their opponents get, but sophisticated players do have to look at those payoffs. The fact that players usually do attend to payoffs of others players (e.g., Knopfle, Wang, and Camerer 2009) is evidence for sophistication.
REFERENCES

Other-Regarding Preferences

A SELECTIVE SURVEY OF EXPERIMENTAL RESULTS

David J. Cooper and John H. Kagel

INTRODUCTION

There has been an enormous amount of experimental research devoted to "other-regarding preferences" since the publication of the first Handbook of Experimental Economics (Kagel and Roth 1995). This literature's daunting size poses serious problems in terms of developing a survey since it is necessary to ignore (or only mention in passing) many worthwhile experiments, along with the flood of results that will no doubt be published shortly after this survey is completed.¹ The literature has also yielded a number of theoretical models designed to organize the data—a search for meaning based on the "facts"—making this an area of experimental research where theories flow directly from the experimental outcomes (as opposed to the more usual case of experiments designed to test extant theory).

As such one must choose a point of attack to get through the literature—should it be theory or data driven? The one adopted here is "historical," using the results of a series of experiments conducted by different groups, often designed to test the latest theories used to explain earlier data. We start with a brief review of where things stood at the time the first Handbook of Experimental Economics was published. We then introduce the two theory papers that have had an enormous influence on this literature, Bolton and Ockenfels (BO; 2000) and Fehr and Schmidt (FS; 1999). These papers showed how other-regarding preferences over income inequality could explain a large number of experimental outcomes, usually in small-group bargaining-type environments, which the "standard" economic model of strictly selfish preferences failed to organize. In contrast, the same preferences, under different institutions (e.g., competitive markets) produced the standard results. All this was done without the need to ignore too many "dead rats" (extant results that contradict one or the other of the two models). This led to a burst of new experiments designed to distinguish between concerns for income inequality on which the BO and FS models focused and other issues such as intentionality and efficiency. We then review some of newer models designed to incorporate these experimental findings, as well experiments responding...